
The Safety Management of Data-driven Safety-Related
Systems

A. G. Faulkner, P. A. Bennett, R. H. Pierce, I. H. A. Johnston

CSE International Ltd, Glanford House, Bellwin Drive, Flixborough DN15 8SN, UK
Tel: +44 1724 862169

Email:agf@cse-euro.com

N. Storey

School of Engineering, University of Warwick, Coventry. CV4 7AL UK

Abstract.

Many safety-related systems are built from generic software which is
customised to work in a particular situation by static configuration data.
Examples of such systems are railway interlockings and air traffic control
systems. While there is now considerable experience and guidance on how to
develop safety-related software, and there are a number of standards in this
area, the topic of safety-related configuration data is hardly mentioned in the
literature. This paper discusses the desirable properties of safety-related data
and sets out principles for the safety management of such data, including a data
lifecycle which is analogous to a software development lifecycle. Validation
and verification of the data, and the means used to achieve such validation and
verification are given particular attention.

Introduction

Many Commercial Off The Shelf (COTS) computer systems are constructed from a
generic software platform which implements the necessary algorithms for the
particular class of application, and is customised for a specific application. Common
sense and good practice often dictates the use of configuration data in one form or
another, rather than changes to the software code itself.

Examples of such data-driven systems include:
1. Railway interlockings, where the signalling control tables for a particular track

layout are represented in the form of data;
2. Railway signalling control systems where data is used to represent the track layout

and the location of each signal, points and other trackside devices;

3. Air traffic control systems (such as radar displays and Flight Data Processing
(FDP) functions) are also configured by extensive data (also known as adaptation
data) which describe the layout of airways and control areas, the location of
navigational aids and many other aspects of airspace design; and

4. Telecommunication switches (exchanges) are also generic platforms that are
customised to the needs of a particular network by data that provide the rules for
call routing and associates telephone numbers with physical or logical circuits.

In these examples, the configuration data are often geographical in nature since the

generic system needs to be adapted to the particular instances of a real physical
environment.

The correct functioning of these data-driven systems is dependent on the
correctness of the configuration data, just as it is dependent on the correctness of the
software code. Errors in the configuration data can lead, in safety-related systems, to
hazards and possibly to accidents.

Configuration data should be clearly distinguished from normal dynamic data
maintained by the computer system. Configuration data represents the static model of
the real world; dynamic data represents the current state of the model (as derived from
sensors and human inputs). Configuration data input is part of the off-line system
design and construction process, and should not be alterable in normal system
operation. The safety management of configuration data is a topic that relates to both
commercially available products (COTS) and specific applications developed in-
house.

The issues of safety management of data

The desire amongst suppliers and operators to use COTS products [1] in safety-related
systems for reasons of cost and timescale [2] raises a requirement for the safety
management of data-driven safety-related systems.

McDermid [2] identifies that the construction cost of a system may be reduced by
the purchase of COTS system. This COTS system will often consist of hardware and
software elements, which will typically be tailored to the input domain by
configuration data.

McDermid [2] further adds that the certification cost of this generic hardware and
software may exceed the savings made by purchasing COTS products. This
certification cost is incurred because the evidence required for approval of the COTS
product may not be available to the buyer or may be inappropriate to the application
domain.

The certification (or approval) cost of a data-driven system may be considered to
be in two distinct parts:
1. That for the evidence for generic part of the safety-related system; and
2. That for the evidence for configuration data used to drive the safety-related system.

The generic part of a COTS solution (both the hardware and software) can be

developed under existing standards such as IEC 61508 [3] using established tools and

techniques as a means of achieving the necessary certification or approval. This is not
to say that the achievement of such certification is necessarily straightforward
particularly for a generic COTS solution. It is usually easier to achieve certification
for a system developed for a particular application, which does not include the
uncertainties associated with possible other uses.

Examples of high integrity COTS systems for specific applications are found in
railway interlocking systems. Here generic hardware and software components have
been developed to a high level of integrity and granted type certification by railway
regulators. In such cases the problem of overall system validation is, in principle,
reduced to that of ensuring the integrity of the configuration data.

The development of the hardware and software parts of a generic solution is
extensively supported by safety-related literature in broadly the same way as the
development of a custom solution for a particular application. There are established
processes, and detailed guidance, for hardware and software that cover a wide range
of equipment and systems. These range from application specific hardware based
protection systems implemented with little of no software content, to complex
monitoring and control software systems based upon standard computing hardware.

For the software element of such systems there are now development languages
and translation tools specifically aimed at safety-related systems. The desirable
characteristics of the software, such as code structure, are well understood, even if
that understanding is sometimes patchily applied. The use of tools to measure the
static and dynamic properties of the software is becoming common.

The configuration data that drives a COTS system in a particular instance is itself,
in most cases, not COTS (although a counter-example is given later). This
application specific part of a COTS solution is likely to be created by the system
integrator, who in many cases will not be the COTS product supplier. It may be
treated as a one-off application developed specifically for a particular instance of the
system.

The issues raised by the use of configuration data in data-driven safety-related
systems are not directly addressed in the safety community literature. The need for
data integrity commensurate with the SIL of the software is recognised in some
standards such as IEC 61508 [3], Def Stan 00-55 [4], and CENELEC prEN 50128 [5].
However, these standards provide very little guidance on how data integrity is to be
achieved, although prEN 50128 [5] is the most useful in this respect and at least
recognises the need for a defined data lifecycle. As a result there is no established
guidance on the process for generating such data, or on methods of achieving
certification for it.

The problems of configuration data are most acutely seen where there are large
volumes of real-world configuration data to be captured. Many systems need some
form of configuration data, but if this is confined to a few scalar parameter values
then the effort in validating these values will be small and the risk associated with this
data correspondingly small. The real concern arises where large volumes of data are
required.

The remainder of this paper sets out to identify the important issues and to indicate
how these issues might be addressed either by using existing techniques or by
developing new ones. The central issues are those of validation and verification,
process evidence, data structure, tools and techniques. There is also a need for an

agreed set of requirements for configuration data for a range of integrity levels, for
example SIL1 to SIL4 in IEC 61508 [3].

Hazard analysis for configuration data

The safety requirements of any system are identified through a process of hazard
and risk analysis. Hazard analysis should consider the problems produced by incorrect
data alongside problems associated with faults within hardware and software. In this
way an integrity requirement should be assigned to the configuration data of a system,
as for other system components. Standards such as IEC 61508 [3] give guidance on
techniques to investigate hazards associated with hardware and software, but say little
about the data within systems.

Hazard analysis involves the investigation of the functionality provided by the
system and the consequences of the failure and failure modes of the identified
functionality.

A variant of the Failure Modes and Effects Analysis (FMEA) method would be a
possible basis for such an analysis. In the case of data the FMEA should consider
both errors in data types and where necessary in individual data entities or values.

As an example, consider a flight data processing (FDP) system. The purpose of
such systems is to distribute data on the proposed flight plans of aircraft to allow the
air traffic controller to be aware of the presence and intentions of aircraft in his or her
sector of airspace or shortly to enter it. Such information aids the controller in
maintaining the mental “picture” of the air traffic and how to control it, and also acts
an important reversionary measure in case of loss of radar surveillance data. Flight
data is presented in the form of flight (progress) strips, either printed or on electronic
displays. Typically an FDP system will generate a flight strip for a given sector some
time in advance of the time a flight is expected to enter the sector. Since airspace
design changes from time to time, it is usual to store sector boundaries as
configuration data. The data failure mode “sector boundary in wrong position” may
cause the system to fail to produce a flight strip for a given flight, or direct it to the
wrong sector, which would lead in turn to a hazardous system failure mode “flight
strip not produced when required”. This kind of error would become more critical if
the “free flight” concept becomes widely used (airliners being given direct routing
from point to point rather than following linear airways) in which case flights could
enter sectors at many different places.

The above example shows an FMEA analysis of a data type, since there are many
sector boundaries in a typical FDP system.

An FMEA analysis applied to individual data elements might consider the trip
threshold values entered for individual sensors in reactor or plant protection systems.
A wrong data value might delay a trip until a hazardous plant state had been reached.
Each element value would have to be considered individually since some may be
more critical than others.

Systems such as railway interlockings and telecommunications systems make
extensive use of configuration data. Railway interlockings are a specific example of a
safety-critical system that clearly illustrates the use of configuration data.

In the example of the railway interlocking the generic part of the system is
customised to the application instance by configuration data. A hazard analysis of the
railway interlocking should identify not only the consequence of failure of the generic
hardware or software, but also the consequences of inaccurate, erroneous or corrupted
configuration data.

Configuration data failures may range from gross errors due to random failures in
hardware, to systematic errors in the data preparation. Systematic errors in data
preparation are due to failures of the data generation (collection) and management, or
as a consequence of changes to the real world which that data represents. Changes to
the real world may be as a consequence of a maintainer exchanging equipments for
different makes, models or issues of the existing equipment.

Validation and verification

Validation and verification of configuration data is central to the safe operation of any
data-driven safety-related system. The definition of the configuration data and the
closeness of its representation to the real world, which it aspires to describe, will be
key factors in maintenance of the configuration data once the safety-related system
enters service.

A system that uses terrain data to guide an aircraft between two points, or in a
ground proximity-warning device, may be taken as an example.

What risk would be posed by terrain data which contained errors? In the case of a
guidance system for low flying, it could lead to ‘negative ground clearance’ and the
loss of the aircraft. In this case, the severity of the hazard is high and the integrity of
the data must be correspondingly high to achieve a tolerable accident rate. If the
terrain data is being used in a ground proximity warning system (GPWS), there has to
be an error on the part of the pilot before the GPWS is needed, and although the
severity of the resulting accident is the same, the likelihood of it is reduced and a
lower integrity can be tolerated for the data.

The degree of rigour used in validation of configuration data should therefore be
commensurate with the risk (hazard severity and likelihood) posed by errors in the
configuration data and the degree to which the safety-related system could tolerate
errors in the data.

What measures, tools and techniques could be used to reduce errors in the terrain
data to an acceptable level? One possibility is to consider how the data is represented
within the computer.

In the above example, the terrain data could be represented as a collection of
heights above sea level on a grid representing the surface of the Earth. Such an array
of values contains no inherent structure with which to perform on-line or off-line
validation. Rules could be devised to identify the maximum height of a mountain,
and the lowest part of a valley, within particular geographical areas. These minimum
and maximum values could then provide range checking to detect gross errors.
However, plausible error values could exist between the identified minimum and
maximum values. Wire frame computer models, which consist of many triangles to
describe the surface of the terrain, offer the opportunity to introduce further diversity

and self-checking capability into the representation of the terrain. Any single point
within the terrain would be represented as the corner of a number of triangles. The
relationship between each of the constituent triangles and the point which makes up a
corner of these constituent triangles provide an inherent structure which can assist in
the validation the terrain. For example, missing triangles (apparent "holes" in the
terrain surface) or non-contiguous areas may be detected, indicating some corruption
in the data.

The representation of terrain as a wire frame model will require more computing
power than a simple grid model, so there may be a trade off between speed of
computation and the ability of the data to reveal errors.

Another problem with geographical data, which is common to all representations,
is that changes in the real terrain, such as the erection of a radio mast, must be
reflected in the data. This is a particularly difficult problem in cases where real world
changes are not within the control of the data user or originator. Geographical data is
an example of data which may itself be COTS in that it is typically produced by a
mapping agency rather than by the user of the application system.

Process evidence

Configuration data for safety-related systems should be created and managed under
some systematic set of processes. The definition and design of the data structures,
and of tools to manipulate and maintain the data content, should be derived in some
systematic manner. This set of systematic processes may be collectively termed a data
lifecycle. A lifecycle does not include evidence, but may include provision for
generating process-based evidence.

Errors in configuration data used for data-driven safety-related systems will, as
noted above, lead to risk. Established safety management tools and techniques should
be used to analyse the risk presented by errors in configuration data.

Process evidence from the construction lifecycle for the generic part of the system
will be derived from the hardware and software components of the system. The
construction lifecycle should also include design evidence for the configuration data.

The population of the configuration data for a specific application instance of the
data-driven safety-related system should also provide evidence for assurance
purposes. The maintenance and management of the configuration data must continue
over the life of the system.

The means of data preparation should be such as to minimise the likelihood of
errors being introduced and maximise the likelihood of errors being detected. Data
entry methods and formats should be as close to the real world representation as
possible. For example, when entering data from a map, it is preferable to use a
digitiser than to read off the coordinates of points of interest by eye and enter them by
keyboard. This is an obvious example, but the principle is one which should be
applied more generally.

The configuration data lifecycle should include:
1. The definition of the internal structure of the data, and its external representation;
2. The data validation techniques to be used;

3. A suite of test datasets;
4. Software tools to manage the configuration data (including translation between

internal and external data representation); and
5. The definition of processes and procedures to manage the configuration data and

the process evidence required for assurance purposes.
When testing the safety-related system, consideration should be given to coverage

measurements of the data. In other words, it should be known what proportion of the
data elements have been accessed by the software. Ideally 100% of the data elements
should be accessed during system test, but whether this is possible, practicable or
even sensible depends on the nature of the data and the application.

Software development should generate a number of test harnesses by which
functional groupings of code may be exercised under the controlled conditions of a
test specification. A corresponding structure for testing configuration data would be a
test data set.

A suite of test data sets should be used to exercise the data-driven system under
predetermined test conditions, these test conditions being described by each data set.
Each data set should represent operation in either a normal or degraded mode with
specified input conditions such as alarms and a description of the expected response
from the safety-related system. The data-driven safety-related system should provide
an opportunity to periodically test the system either for assurance of the systems
continued safe operation or for fault determination. The data-driven system offers an
opportunity to validate the system in the operational domain. The test data sets
should be suitably separated from the operational domain so as not to become
confused with the normal operation of the system.

Configuration data will probably require a set of software tools to manage and
manipulate both the configuration data and the test data sets. These software tools
should facilitate the offline validation of the configuration data.

The definition of processes and procedures for the configuration data recognises
that people will be involved in the installation or operation of the safety-related
system, or both. These processes are intended to provide a systematic framework, to
be refined through experience and use, to reduce systematic errors in the
configuration data.

Configuration data structure

Design features of the configuration data should be selected which reduce the
likelihood that hazardous errors will remain in the data when the system goes into
service and ease the task of data validation.

The data structure of the configuration data should be such as to enable
demonstration that there is sufficient modularity to reduce side effects when the
configuration data is maintained or extended. The configuration data should be
complete, and it should not contain elements or structures which are not required.
Where the configuration data has other features or structures then evidence should be
provided that these features or structures are independent of the requirements of the
application instance. Data elements (data content), which are not required for the

application instance, should be removed from the configuration data, unless it is not
reasonably practicable to do this.

Validation and verification should be a prime design consideration for
configuration data. Design options which ease, or make feasible, online or offline
validation of configuration data should be chosen in preference to those design
decisions which simply ease the design of other elements of the system such as
software, hardware or fit with a current data set. Where possible the design option for
the data structure of the configuration data should be requirement driven, and solution
independent. The current data set may not lend itself to the validation requirements
and hence be unsuitable for use in the safety-related data-driven system.

Tools and techniques

What tools and techniques are appropriate to configuration data used for safety-
related systems? The tools and techniques used for data preparation and data
maintenance should be appropriate to the risks posed by the use of configuration data
in a data-driven safety-related system.

Current standards such as IEC 61508 [3] identify development, verification and
validation and techniques for software, which are recommended, based upon the
required safety integrity level (SIL1, SIL2, SIL3 and SIL4), with more rigorous
techniques being used for higher integrity levels.

The definition of what tools and techniques are necessary for configuration data for
a particular safety integrity level requires further debate amongst the safety
community as a whole.

Examples required could include the following:
1. Techniques for data validation and verification could include inspection of the data

by individuals independent of those who originally collected and entered the data;
2. Where the data is translated from an external human readable representation to an

internal representation (which is normal), measures should be devised to check that
the translation process does not corrupt the data, for example by reverse translation
and checking against the original data;

3. The data entry format should be such as to minimise the chances of error. For
example, where map data is to be entered, it would make sense to use a drawing
tool rather than lists of co-ordinates of lines and points in numeric form (there is at
least one FDP system which requires the latter, and despite internal validation
checks in the data translator the system in question has failed in operation due to
errors in the data); and

4. System testing will clearly be an important means of validating the data together
with the software design and implementation. However, tests should be designed
specifically to check that the software has accessed each data item. In the example
of the FDP system given above, simulation data could be used to ensure that a
flight strip is produced at the correct time when a flight crosses every sector
boundary in the airspace.

Requirements for configuration data used for safety-related
systems

The design of the configuration data should facilitate the validation of the data
content and structure as appropriate to the risk presented by errors in the data set. If
safety analysis exposes a high risk based upon failure of the configuration data
content or structure, then the system requirements should include online validation
(dynamic checking of the data).

The representation and means used for configuration data preparation should be as
intuitive, convenient, and close to conventional real-world representations as possible,
to minimise the likelihood of the data preparation process introducing errors.

Care must be taken in collecting the source information from which the
configuration data will be created, to ensure that it is an adequately correct
representation of “ground truth” (the source information may include geographical
map data, engineering drawings, photographs, plant specifications and even human
memories). This can be a particularly time consuming exercise if the source
information is known to be out of date or unreliable, or there are doubts about its
accuracy. New geographical or engineering surveys may be required.

A configuration data definition should support the concept of modularity, where
this is logically feasible. A module of data should be self-consistent, complete, and
contain no unresolved internal references, to facilitate automated rule-based
validation.

Where references to other data items and data structures are made within a
configuration data module these references should be made in such a way as to
facilitate their validation. Data references (keys) should be based upon compound
data structures. These compound data keys contain sufficient information to identify
the referenced item without any addition external data. These compound keys would
be in contrast to integer based keys, which would only allow range-based validation
checks.

Conclusion

It has been argued above that there is a need for the safety management of
configuration data, and a number of principles have been outlined. These principles
are in addition to the requirements or guidance found in a number of standards, which
is in most cases very weak.

More work is required in the area of data driven safety related system to establish
clear guidance as to the design and management of data driven systems. The
assurance of the configuration data should be supported by process evidence from an
identifiable lifecycle for the system as a whole that should include the configuration
data.

The population of the configuration data should be supported by process and
procedures to reduce systematic error. These processes and procedures should not
only be capable of the reduction of systematic error in the creation of configuration
data, but also be used for the management of the configuration data through the

system life. These processes and procedures should not only be concerned with
control of the introduction of errors but also the detection of errors.

The design of the configuration data should aide and facilitate the validation and
verification of the data through data structures that lend themselves to rule based
automation. The configuration data should support the use of 'data sets' that may be
used to calibrate, test, and exercise the entire system. These data sets are created as
separate modules to fully exercise the system in all functional conditions allowing
demonstration of normal and degraded modes. These data sets would allow the
system administrator to either detect faults in the system operation or to gain
confidence in the continued correct operation of the system.

References

1. R. H. Pierce, S. P. Wilson, J. A. McDermid, L. Beus-Dukic and A. Eaton,
"Requirements for the use of COTS operating systems in safety-related air traffic
services", Proceedings of Data Systems in Aerospace, Lisbon, Portugal, 17 May 1999

2. J. A. McDermid "The cost of COTS", IEE Colloquium - COTS and Safety critical
systems. January 1998

3. International Electrotechnical Commission, Functional Safety: Safety-related
Systems, International Standard IEC 61508, January 2000.

4. UK Ministry of Defence (MoD) Def Stan 00-55: Requirements for Safety Related
Software in Defence Equipment Issue 2 – Dated 1st August 1997

5. European Committee for Electrotechnical Standardisation CENELEC prEV 50128:
Railway Applications: Software for Railway Control and Protection Systems Final
DRAFT June 1997.

