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Abstract. 

Many safety-related systems are built from generic software which is 
customised to work in a particular situation by static configuration data.  
Examples of such systems are railway interlockings and air traffic control 
systems. While there is now considerable experience and guidance on how to 
develop safety-related software, and there are a number of standards in this 
area, the topic of safety-related configuration data is hardly mentioned in the 
literature.  This paper discusses the desirable properties of safety-related data 
and sets out principles for the safety management of such data, including a data 
lifecycle which is analogous to a software development lifecycle.  Validation 
and verification of the data, and the means used to achieve such validation and 
verification are given particular attention.  

Introduction 

 
Many Commercial Off The Shelf (COTS) computer systems are constructed from a 
generic software platform which implements the necessary algorithms for the 
particular class of application, and is customised for a specific application. Common 
sense and good practice often dictates the use of configuration data in one form or 
another, rather than changes to the software code itself. 

Examples of such data-driven systems include:  
1. Railway interlockings, where the signalling control tables for a particular track 

layout are represented in the form of data; 
2. Railway signalling control systems where data is used to represent the track layout 

and the location of each signal, points and other trackside devices; 



3. Air traffic control systems (such as radar displays and Flight Data Processing  
(FDP) functions) are also configured by extensive data (also known as adaptation 
data) which describe the layout of airways and control areas, the location of 
navigational aids and many other aspects of airspace design; and 

4. Telecommunication switches (exchanges) are also generic platforms that are 
customised to the needs of a particular network by data that provide the rules for 
call routing and associates telephone numbers with physical or logical circuits. 
 
In these examples, the configuration data are often geographical in nature since the 

generic system needs to be adapted to the particular instances of a real physical 
environment.   

The correct functioning of these data-driven systems is dependent on the 
correctness of the configuration data, just as it is dependent on the correctness of the 
software code.  Errors in the configuration data can lead, in safety-related systems, to 
hazards and possibly to accidents.  

Configuration data should be clearly distinguished from normal dynamic data 
maintained by the computer system.  Configuration data represents the static model of 
the real world; dynamic data represents the current state of the model (as derived from 
sensors and human inputs).  Configuration data input is part of the off-line system 
design and construction process, and should not be alterable in normal system 
operation. The safety management of configuration data is a topic that relates to both 
commercially available products (COTS) and specific applications developed in-
house.  

The issues of safety management of data 

The desire amongst suppliers and operators to use COTS products [1] in safety-related 
systems for reasons of cost and timescale [2] raises a requirement for the safety 
management of data-driven safety-related systems. 

McDermid [2] identifies that the construction cost of a system may be reduced by 
the purchase of COTS system.  This COTS system will often consist of hardware and 
software elements, which will typically be tailored to the input domain by 
configuration data.  

McDermid [2] further adds that the certification cost of this generic hardware and 
software may exceed the savings made by purchasing COTS products.  This 
certification cost is incurred because the evidence required for approval of the COTS 
product may not be available to the buyer or may be inappropriate to the application 
domain. 

The certification (or approval) cost of a data-driven system may be considered to 
be in two distinct parts:  
1. That for the evidence for generic part of the safety-related system; and  
2. That for the evidence for configuration data used to drive the safety-related system. 

 
The generic part of a COTS solution (both the hardware and software) can be 

developed under existing standards such as IEC 61508 [3] using established tools and 



techniques as a means of achieving the necessary certification or approval.  This is not 
to say that the achievement of such certification is necessarily straightforward 
particularly for a generic COTS solution.  It is usually easier to achieve certification 
for a system developed for a particular application, which does not include the 
uncertainties associated with possible other uses.   

Examples of high integrity COTS systems for specific applications are found in 
railway interlocking systems. Here generic hardware and software components have 
been developed to a high level of integrity and granted type certification by railway 
regulators.  In such cases the problem of overall system validation is, in principle, 
reduced to that of ensuring the integrity of the configuration data.  

The development of the hardware and software parts of a generic solution is 
extensively supported by safety-related literature in broadly the same way as the 
development of a custom solution for a particular application.  There are established 
processes, and detailed guidance, for hardware and software that cover a wide range 
of equipment and systems.  These range from application specific hardware based 
protection systems implemented with little of no software content, to complex 
monitoring and control software systems based upon standard computing hardware. 

For the software element of such systems there are now development languages 
and translation tools specifically aimed at safety-related systems.  The desirable 
characteristics of the software, such as code structure, are well understood, even if 
that understanding is sometimes patchily applied.  The use of tools to measure the 
static and dynamic properties of the software is becoming common. 

The configuration data that drives a COTS system in a particular instance is itself, 
in most cases, not COTS (although a counter-example is given later).  This 
application specific part of a COTS solution is likely to be created by the system 
integrator, who in many cases will not be the COTS product supplier.  It may be 
treated as a one-off application developed specifically for a particular instance of the 
system. 

The issues raised by the use of configuration data in data-driven safety-related 
systems are not directly addressed in the safety community literature. The need for 
data integrity commensurate with the SIL of the software is recognised in some 
standards such as IEC 61508 [3], Def Stan 00-55 [4], and CENELEC prEN 50128 [5].  
However, these standards provide very little guidance on how data integrity is to be 
achieved, although prEN 50128 [5] is the most useful in this respect and at least 
recognises the need for a defined data lifecycle. As a result there is no established 
guidance on the process for generating such data, or on methods of achieving 
certification for it.   

The problems of configuration data are most acutely seen where there are large 
volumes of real-world configuration data to be captured.  Many systems need some 
form of configuration data, but if this is confined to a few scalar parameter values 
then the effort in validating these values will be small and the risk associated with this 
data correspondingly small.  The real concern arises where large volumes of data are 
required. 

The remainder of this paper sets out to identify the important issues and to indicate 
how these issues might be addressed either by using existing techniques or by 
developing new ones. The central issues are those of validation and verification, 
process evidence, data structure, tools and techniques. There is also a need for an 



agreed set of requirements for configuration data for a range of integrity levels, for 
example SIL1 to SIL4 in IEC 61508 [3]. 

Hazard analysis for configuration data 

The safety requirements of any system are identified through a process of hazard 
and risk analysis. Hazard analysis should consider the problems produced by incorrect 
data alongside problems associated with faults within hardware and software. In this 
way an integrity requirement should be assigned to the configuration data of a system, 
as for other system components. Standards such as IEC 61508 [3] give guidance on 
techniques to investigate hazards associated with hardware and software, but say little 
about the data within systems. 

Hazard analysis involves the investigation of the functionality provided by the 
system and the consequences of the failure and failure modes of the identified 
functionality.   

A variant of the Failure Modes and Effects Analysis (FMEA) method would be a 
possible basis for such an analysis.  In the case of data the FMEA should consider 
both errors in data types and where necessary in individual data entities or values. 

As an example, consider a flight data processing (FDP) system.  The purpose of 
such systems is to distribute data on the proposed flight plans of aircraft to allow the 
air traffic controller to be aware of the presence and intentions of aircraft in his or her 
sector of airspace or shortly to enter it.  Such information aids the controller in 
maintaining the mental “picture” of the air traffic and how to control it, and also acts 
an important reversionary measure in case of loss of radar surveillance data.  Flight 
data is presented in the form of flight (progress) strips, either printed or on electronic 
displays.  Typically an FDP system will generate a flight strip for a given sector some 
time in advance of the time a flight is expected to enter the sector.  Since airspace 
design changes from time to time, it is usual to store sector boundaries as 
configuration data.  The data failure mode “sector boundary in wrong position” may 
cause the system to fail to produce a flight strip for a given flight, or direct it to the 
wrong sector, which would lead in turn to a hazardous system failure mode “flight 
strip not produced when required”.  This kind of error would become more critical if 
the “free flight” concept becomes widely used (airliners being given direct routing 
from point to point rather than following linear airways) in which case flights could 
enter sectors at many different places. 

The above example shows an FMEA analysis of a data type, since there are many 
sector boundaries in a typical FDP system. 

An FMEA analysis applied to individual data elements might consider the trip 
threshold values entered for individual sensors in reactor or plant protection systems.  
A wrong data value might delay a trip until a hazardous plant state had been reached.  
Each element value would have to be considered individually since some may be 
more critical than others. 

Systems such as railway interlockings and telecommunications systems make 
extensive use of configuration data. Railway interlockings are a specific example of a 
safety-critical system that clearly illustrates the use of configuration data. 



In the example of the railway interlocking the generic part of the system is 
customised to the application instance by configuration data.  A hazard analysis of the 
railway interlocking should identify not only the consequence of failure of the generic 
hardware or software, but also the consequences of inaccurate, erroneous or corrupted 
configuration data. 

Configuration data failures may range from gross errors due to random failures in 
hardware, to systematic errors in the data preparation. Systematic errors in data 
preparation are due to failures of the data generation (collection) and management, or 
as a consequence of changes to the real world which that data represents.  Changes to 
the real world may be as a consequence of a maintainer exchanging equipments for 
different makes, models or issues of the existing equipment. 

Validation and verification 

Validation and verification of configuration data is central to the safe operation of any 
data-driven safety-related system.  The definition of the configuration data and the 
closeness of its representation to the real world, which it aspires to describe, will be 
key factors in maintenance of the configuration data once the safety-related system 
enters service. 

A system that uses terrain data to guide an aircraft between two points, or in a 
ground proximity-warning device, may be taken as an example. 

What risk would be posed by terrain data which contained errors?  In the case of a 
guidance system for low flying, it could lead to ‘negative ground clearance’ and the 
loss of the aircraft.  In this case, the severity of the hazard is high and the integrity of 
the data must be correspondingly high to achieve a tolerable accident rate.  If the 
terrain data is being used in a ground proximity warning system (GPWS), there has to 
be an error on the part of the pilot before the GPWS is needed, and although the 
severity of the resulting accident is the same, the likelihood of it is reduced and a 
lower integrity can be tolerated for the data. 

The degree of rigour used in validation of configuration data should therefore be 
commensurate with the risk (hazard severity and likelihood) posed by errors in the 
configuration data and the degree to which the safety-related system could tolerate 
errors in the data.   

What measures, tools and techniques could be used to reduce errors in the terrain 
data to an acceptable level?  One possibility is to consider how the data is represented 
within the computer. 

In the above example, the terrain data could be represented as a collection of 
heights above sea level on a grid representing the surface of the Earth.  Such an array 
of values contains no inherent structure with which to perform on-line or off-line 
validation.  Rules could be devised to identify the maximum height of a mountain, 
and the lowest part of a valley, within particular geographical areas. These minimum 
and maximum values could then provide range checking to detect gross errors.  
However, plausible error values could exist between the identified minimum and 
maximum values. Wire frame computer models, which consist of many triangles to 
describe the surface of the terrain, offer the opportunity to introduce further diversity 



and self-checking capability into the representation of the terrain.  Any single point 
within the terrain would be represented as the corner of a number of triangles.  The 
relationship between each of the constituent triangles and the point which makes up a 
corner of these constituent triangles provide an inherent structure which can assist in 
the validation the terrain.  For example, missing triangles (apparent "holes" in the 
terrain surface) or non-contiguous areas may be detected, indicating some corruption 
in the data. 

The representation of terrain as a wire frame model will require more computing 
power than a simple grid model, so there may be a trade off between speed of 
computation and the ability of the data to reveal errors. 

Another problem with geographical data, which is common to all representations, 
is that changes in the real terrain, such as the erection of a radio mast, must be 
reflected in the data.  This is a particularly difficult problem in cases where real world 
changes are not within the control of the data user or originator.  Geographical data is 
an example of data which may itself be COTS in that it is typically produced by a 
mapping agency rather than by the user of the application system. 

Process evidence 

Configuration data for safety-related systems should be created and managed under 
some systematic set of processes.  The definition and design of the data structures, 
and of tools to manipulate and maintain the data content, should be derived in some 
systematic manner. This set of systematic processes may be collectively termed a data 
lifecycle.  A lifecycle does not include evidence, but may include provision for 
generating process-based evidence.   

Errors in configuration data used for data-driven safety-related systems will, as 
noted above, lead to risk.  Established safety management tools and techniques should 
be used to analyse the risk presented by errors in configuration data. 

Process evidence from the construction lifecycle for the generic part of the system 
will be derived from the hardware and software components of the system.  The 
construction lifecycle should also include design evidence for the configuration data. 

The population of the configuration data for a specific application instance of the 
data-driven safety-related system should also provide evidence for assurance 
purposes.  The maintenance and management of the configuration data must continue 
over the life of the system. 

The means of data preparation should be such as to minimise the likelihood of 
errors being introduced and maximise the likelihood of errors being detected.  Data 
entry methods and formats should be as close to the real world representation as 
possible. For example, when entering data from a map, it is preferable to use a 
digitiser than to read off the coordinates of points of interest by eye and enter them by 
keyboard.  This is an obvious example, but the principle is one which should be 
applied more generally. 

The configuration data lifecycle should include: 
1. The definition of the internal structure of the data, and its external representation; 
2. The data validation techniques to be used; 



3. A suite of test datasets; 
4. Software tools to manage the configuration data (including translation between 

internal and external data representation); and 
5. The definition of processes and procedures to manage the configuration data and 

the process evidence required for assurance purposes. 
When testing the safety-related system, consideration should be given to coverage 

measurements of the data.  In other words, it should be known what proportion of the 
data elements have been accessed by the software.  Ideally 100% of the data elements 
should be accessed during system test, but whether this is possible, practicable or 
even sensible depends on the nature of the data and the application. 

Software development should generate a number of test harnesses by which 
functional groupings of code may be exercised under the controlled conditions of a 
test specification.  A corresponding structure for testing configuration data would be a 
test data set.  

A suite of test data sets should be used to exercise the data-driven system under 
predetermined test conditions, these test conditions being described by each data set.  
Each data set should represent operation in either a normal or degraded mode with 
specified input conditions such as alarms and a description of the expected response 
from the safety-related system.  The data-driven safety-related system should provide 
an opportunity to periodically test the system either for assurance of the systems 
continued safe operation or for fault determination. The data-driven system offers an 
opportunity to validate the system in the operational domain.  The test data sets 
should be suitably separated from the operational domain so as not to become 
confused with the normal operation of the system. 

Configuration data will probably require a set of software tools to manage and 
manipulate both the configuration data and the test data sets.  These software tools 
should facilitate the offline validation of the configuration data. 

The definition of processes and procedures for the configuration data recognises 
that people will be involved in the installation or operation of the safety-related 
system, or both.  These processes are intended to provide a systematic framework, to 
be refined through experience and use, to reduce systematic errors in the 
configuration data. 

Configuration data structure 

Design features of the configuration data should be selected which reduce the 
likelihood that hazardous errors will remain in the data when the system goes into 
service and ease the task of data validation.  

The data structure of the configuration data should be such as to enable 
demonstration that there is sufficient modularity to reduce side effects when the 
configuration data is maintained or extended.  The configuration data should be 
complete, and it should not contain elements or structures which are not required.  
Where the configuration data has other features or structures then evidence should be 
provided that these features or structures are independent of the requirements of the 
application instance.  Data elements (data content), which are not required for the 



application instance, should be removed from the configuration data, unless it is not 
reasonably practicable to do this. 

Validation and verification should be a prime design consideration for 
configuration data.  Design options which ease, or make feasible, online or offline 
validation of configuration data should be chosen in preference to those design 
decisions which simply ease the design of other elements of the system such as 
software, hardware or fit with a current data set.  Where possible the design option for 
the data structure of the configuration data should be requirement driven, and solution 
independent.  The current data set may not lend itself to the validation requirements 
and hence be unsuitable for use in the safety-related data-driven system. 

Tools and techniques 

What tools and techniques are appropriate to configuration data used for safety-
related systems?  The tools and techniques used for data preparation and data 
maintenance should be appropriate to the risks posed by the use of configuration data 
in a data-driven safety-related system. 

Current standards such as IEC 61508 [3] identify development, verification and 
validation and techniques for software, which are recommended, based upon the 
required safety integrity level (SIL1, SIL2, SIL3 and SIL4), with more rigorous 
techniques being used for higher integrity levels. 

The definition of what tools and techniques are necessary for configuration data for 
a particular safety integrity level requires further debate amongst the safety 
community as a whole. 

Examples required could include the following: 
1. Techniques for data validation and verification could include inspection of the data 

by individuals independent of those who originally collected and entered the data;  
2. Where the data is translated from an external human readable representation to an 

internal representation (which is normal), measures should be devised to check that 
the translation process does not corrupt the data, for example by reverse translation 
and checking against the original data; 

3. The data entry format should be such as to minimise the chances of error.  For 
example, where map data is to be entered, it would make sense to use a drawing 
tool rather than lists of co-ordinates of lines and points in numeric form (there is at 
least one FDP system which requires the latter, and despite internal validation 
checks in the data translator the system in question has failed in operation due to 
errors in the data); and 

4. System testing will clearly be an important means of validating the data together 
with the software design and implementation.  However, tests should be designed 
specifically to check that the software has accessed each data item.  In the example 
of the FDP system given above, simulation data could be used to ensure that a 
flight strip is produced at the correct time when a flight crosses every sector 
boundary in the airspace. 



Requirements for configuration data used for safety-related 
systems 

The design of the configuration data should facilitate the validation of the data 
content and structure as appropriate to the risk presented by errors in the data set.  If 
safety analysis exposes a high risk based upon failure of the configuration data 
content or structure, then the system requirements should include online validation 
(dynamic checking of the data). 

The representation and means used for configuration data preparation should be as 
intuitive, convenient, and close to conventional real-world representations as possible, 
to minimise the likelihood of the data preparation process introducing errors.  

Care must be taken in collecting the source information from which the 
configuration data will be created, to ensure that it is an adequately correct 
representation of “ground truth” (the source information may include geographical 
map data, engineering drawings, photographs, plant specifications and even human 
memories).  This can be a particularly time consuming exercise if the source 
information is known to be out of date or unreliable, or there are doubts about its 
accuracy.  New geographical or engineering surveys may be required. 

A configuration data definition should support the concept of modularity, where 
this is logically feasible.  A module of data should be self-consistent, complete, and 
contain no unresolved internal references, to facilitate automated rule-based 
validation. 

Where references to other data items and data structures are made within a 
configuration data module these references should be made in such a way as to 
facilitate their validation.  Data references (keys) should be based upon compound 
data structures. These compound data keys contain sufficient information to identify 
the referenced item without any addition external data.  These compound keys would 
be in contrast to integer based keys, which would only allow range-based validation 
checks. 

Conclusion 

It has been argued above that there is a need for the safety management of 
configuration data, and a number of principles have been outlined. These principles 
are in addition to the requirements or guidance found in a number of standards, which 
is in most cases very weak. 

More work is required in the area of data driven safety related system to establish 
clear guidance as to the design and management of data driven systems. The 
assurance of the configuration data should be supported by process evidence from an 
identifiable lifecycle for the system as a whole that should include the configuration 
data. 

The population of the configuration data should be supported by process and 
procedures to reduce systematic error.  These processes and procedures should not 
only be capable of the reduction of systematic error in the creation of configuration 
data, but also be used for the management of the configuration data through the 



system life. These processes and procedures should not only be concerned with 
control of the introduction of errors but also the detection of errors. 

The design of the configuration data should aide and facilitate the validation and 
verification of the data through data structures that lend themselves to rule based 
automation.  The configuration data should support the use of 'data sets' that may be 
used to calibrate, test, and exercise the entire system.  These data sets are created as 
separate modules to fully exercise the system in all functional conditions allowing 
demonstration of normal and degraded modes.  These data sets would allow the 
system administrator to either detect faults in the system operation or to gain 
confidence in the continued correct operation of the system. 
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