
Data Requirements for Data-Intensive Safety-Related Systems

Neil Storey, Ph.D.; School of Engineering, University of Warwick; Coventry, UK

Alastair Faulkner, M.Sc.; CSE International Ltd.; Flixborough, UK

Keywords: data, requirements, safety-related systems, software, safety

Abstract

Many computer-based systems make use of large amounts of data to determine their operation.
This may be to allow dedicated control systems to be adapted to a particular situation, or to allow
standardised hardware and software elements to be configured for a specific application. This
latter category includes many COTS products that are configured for a given purpose through the
use of data.

While data is clearly crucial to the correct operation of these data-intensive systems, there is
much evidence to suggest that it is often overlooked. Data is often not subjected to systematic
hazard analysis and consequently data-related hazards are often not identified. For this reason,
data in such systems is not normally assigned any specific safety requirements and is not given a
particular integrity level.

This paper looks at the characteristics of data in data-intensive safety-related systems and
describes the need for dedicated data safety requirements. It then considers both general and
specific data requirements in more detail, and discusses issues of data quality and data integrity.
It then outlines the data supply process before considering the verification and validation of data-
intensive systems.

Introduction

All computer-based systems make use of data in one form or another. This might be in the form
of simple constants within programs or temporary values used during calculations. However,
some systems use of large quantities of data that determine the fundamental operation of the
system. Examples include air traffic control systems, railway signalling systems and battlefield
management systems. We are also seeing increased use of systems that use standardized
hardware and software that are configured for a particular application through the use of data.
These may be conventional COTS applications or custom systems that are to be used in a wide
range of situations. All these applications share the basic property that the operation of the
system is strongly influenced by, if not determined by, data. These systems commonly operate
within a hierarchy of systems that share data, and may be referred to as ‘data-intensive’ systems.

When data-intensive systems are used within safety-related applications the safety of the overall
systems is determined by the properties of all its constituent parts. Clearly the dependability of
the hardware and software elements will be crucial to the safety of the system, but the correctness
of the data is also essential if the system is going to achieve overall safety. Unfortunately,
experience shows that while considerable effort is applied to making sure that the hardware and
software components achieve an acceptable level of safety, the data within such systems is often
overlooked [ref. 1]. One reason for this oversight may be that the various standards in this area
do not identify data as a distinct system element but rather consider it to be an integral part of
software. While this is appropriate for the constants and variables found within conventional
programs, it is not helpful when dealing with data-intensive applications. In such systems the

data often forms a distinct and separate entity that is invariably developed and maintained
separately from the software of the system. Data also has very different properties from
executable software and requires different techniques for its production and verification. At
present the various standards give almost no guidance on the generation, validation or
maintenance of data [refs. 2-6].

If data is indeed a major element within data-intensive systems, one would expect that the
development methods used to produce this data would reflect the same degree of care and
attention that is applied to the other components of safety-related systems. However, experience
suggests that this is not the case. To investigate this situation a survey was performed to
investigate the techniques being used to develop data within a range of industrial sectors [ref. 7].
The key findings of the survey are that:

• Data is often not subjected to any systematic hazard or risk analysis.
• Data is often not given any specific safety requirements.
• Data is often not assigned any specific integrity requirements.
• Data is often poorly structured, making errors more likely and harder to detect.
• Data is often not subjected to any form of verification.

Many of the problems identified within the survey follow from the first point listed above. Since
data is not identified as a specific entity it is often ignored within the process of hazard and risk
analysis. This may be because it is ‘hidden’ within the software element of the system, or
because data creation is seen as part of system commissioning rather than system design.

If data is not considered within the hazard analysis stage, no data-related hazards will be
identified. This will suggest that the data has no specific safety requirements and that little effort
needs to be expended in getting it right. This is perhaps the reason why no specific integrity
requirements are normally assigned to the data.

As data commonly does not have any specific integrity requirements, little effort is applied to its
design or production. Consequently, data is often poorly structured, making data errors more
likely and harder to detect. Hardware or software elements requiring high integrity will often
make use of fault detection or fault tolerant techniques to overcome faults. Since data invariably
has no integrity requirements, such techniques would not normally be considered.

Since data often has no specific safety requirements and no integrity requirements, it is common
not to verify the correctness of the data. When the completed system is validated this will clearly
provide some validation of the data used in this implementation of the system, but will give little
confidence in the safety of other installations that use different data sets.

Data within safety-related systems

This paper is not concerned with data that forms an integral part of the algorithms within software
components, nor with data faults that may be produced as a result of failures within these
algorithms. These topics are relatively well understood and are covered within the literature and
the various standards in this area.

In data-intensive applications, data is used not only within the various software algorithms, but
also to define and modify the operation of the system. Data may be used in a number of ways in
such systems, and the role and characteristics of the data vary considerably. In some applications

data will be used to provide a static description of the environment in which the system operates,
while in others it will describe the system’s configuration. Changes in the environment will give
rise to dynamic data that will enter the system through interfaces to other equipment or systems.
Data may also be used to store temporal information by holding historical data (which may be
used for trend analysis or maintenance purposes) or information on future events (as in the case of
schedules or timetables).

In many cases one of the major motivations for adopting a data-driven approach, is that it allows
the system to be easily adapted in response to changes in the configuration of the system or its
environment. Data-driven systems offer the opportunity to modify the data component and
hence influence the behaviour of the system without changing the hardware and software
components. However, this ease of modification brings with it potential pitfalls. In non-critical
systems one of the motivations for using a software-based approach is the ease with which
software can be modified to produce system upgrades. In critical applications this apparent
advantage is illusory, since the effort involved in re-validating the system following modifications
to the software, is often much greater than would be required for simple hardware changes. At
present many systems use a data-driven approach specifically because this permits simple
upgrades through changes to the data. However, this choice may well have been based on the
assumption that these changes may be made without any need for re-validation of the data or the
system as a whole. Unfortunately, unless the system has been specifically designed with this
objective in mind, this assumption is almost certainly unjustified.

Since data plays a large part in determining the behaviour of a data-driven system, any changes to
the data must be investigated to see if they influence the safety of the system. This might suggest
that any changes to the data would require that the entire system is re-validated. However,
modularisation can greatly reduce the amount of re-validation that is required. From our
experience of the use of software within safety-related systems we know that the use of an
appropriate software architecture can greatly simplify software maintenance. Careful partitioning
of software into well-designed modules can allow modifications to be made to one module with
only limited re-validation of other parts of the system. A similar approach can also be applied to
data, where use of an appropriate data architecture can be used to produce a system where minor
data modification need not require extensive re-validation.

The data architecture of a system is described by the system data model, which should include all
the data used by the system. This will include static data used to configure the system and
dynamic data passed to the system through interfaces to other systems. Data maintenance is
strongly influenced by the structure and modularity of the data architecture. Wherever possible,
data that is subject to change should be placed within separate modules that have limited and
well-defined interfaces to the remainder of the system. If this is done, it may be possible to
establish safety requirements for the data within these modules, and to demonstrate that any data
satisfying these requirements will not compromise the safety of the system. This would permit
data within such a module to be validated (by demonstrating that it meets its safety requirements)
without having to re-validate the entire system. Unfortunately, in many cases it may not be
possible to produce a set of data requirements for a single module that will guarantee system
safety. In such cases the modification of data within one module will require more extensive
investigation of other parts of the system. Where a system is based upon a monolithic data
architecture, any data change may require that the entire system be re-validated.

The safety requirements associated with data relate not only to its functional characteristics but
also its integrity. It is therefore appropriate to look in more detail at the nature of data
requirements.

Data requirements

Data requirements, like other system requirements, have many components. Clearly the data will
need to satisfy the functional data requirements that relate to the function that the overall system
is designed to perform. Additionally, there may be various non-functional data requirements
which are not directly related to the function of the system, but which bestow beneficial
characteristics. For example a non-functional data requirement might be that the size of the data
set is less than some particular value, so that it will fit within a certain memory device. A third
group of requirements relate to the safety of the system and impose limitations on the data in
order to avoid unsafe operation. These data safety requirements may then be divided into what
might be termed ‘specific’ and ‘general’ aspects. The specific data safety requirements are
related to the function of the system and reflect the effect of particular data items (or groups of
items) on the safety of the system. For example, there might be a requirement that a data value
representing the separation between two aircraft should always be positive, as a negative or zero
value corresponds to an accident. These requirements are very application specific and are
generated as a result of data-related hazards identified during the hazard analysis phase. The
general data safety requirements represent more generic requirements relating to individual data
items, groups of items or the complete data set. These include considerations of data quality and
data integrity. While these general requirements will vary considerably from one application to
another, the principles involved have many common elements. For this reason the remainder of
this paper will concentrate on these general data safety requirements, and in particular on
consideration of data quality requirements and data integrity requirements.

The distinction between ‘data quality’ and ‘data integrity’ is subtle and workers in this area are
not consistent in the way they use these terms. Within this paper we use the term data quality
requirements to describe those aspects of data that relate to its ability to meet the requirements of
the system. These include considerations such as accuracy, resolution and timeliness. In
contrast, data integrity requirements are taken to represent the importance of the correctness of
the data. This will be determined by the likelihood that data errors will cause a system failure,
and by the consequences of that failure.

Data quality requirements

One of the few standards that provide guidance on data is RTCA DO 200A [ref. 8], which is
concerned with aeronautical data. This identifies a number of aspects of data quality:

• The accuracy of the data.
• The resolution of the data.
• The confidence that the data is not corrupted while stored or in transit (assurance level).
• The ability to determine the origin of the data (traceability).
• The confidence that the data is applicable to the period of (its) intended use (timeliness).
• All of the data needed to support the function is provided (completeness).
• The format of the data meets the user requirements.

The nature of these aspects reflects the application area. Aeronautical data is very often
concerned with physical measurements of such quantities as altitude or direction. Here accuracy
and resolution are key factors in determining data quality and have a direct influence on safety.
However in many cases data does not represent an analog measurement and these measures are
inappropriate. If a data element represents a binary quantity or a printable character, the concepts
of accuracy and resolution are meaningless.

When dealing with a data value that represents a digital quantity it may be appropriate to assume
that the value is either correct or incorrect. However, when dealing with a data value that
represents an analog reading, there will not generally be a uniquely correct value. All analog
measurements are subject to errors and thus all such measurements will be subject to variability.
Thus when defining the requirements of measurement data we need to define the required
resolution and accuracy of the data.

It is clear that the quality requirements of data are not simply a case of defining whether we need
‘high quality’ or ‘low quality’ data. The meaning of quality varies considerably with the nature
of the data.

Quality also varies with time since one element of quality identified in DO 200A relates to the
timeliness of the data. A data item may be of high quality at the time it is created but may become
invalid, or of lower quality, as time passes. For example, data describing the position of a train
on a track will be valid for a relatively short period if the train is traveling at high speed.

Data integrity requirements

The integrity requirements of a system reflect the importance of the correct operation of that
system. The generic standard IEC 61508 [ref. 2] describes the level of criticality of a system by
assigning it a safety integrity level (SIL). It then goes on to describe appropriate characteristics
and development methods for systems within each of these integrity levels. The standard also
gives target failure rates for systems of each SIL and these are shown in Table 1.

Table 1. Target failure rates for systems of different safety integrity levels from IEC 61508

SIL High demand or continuous mode
(Probability of a

dangerous failure per hour)

Low demand mode
(Probability of

failure on demand)
4 ≥ 10-9 to < 10-8 ≥ 10-5 to < 10-4
3 ≥ 10-8 to < 10-7 ≥ 10-4 to < 10-3
2 ≥ 10-7 to < 10-6 ≥ 10-3 to < 10-2
1 ≥ 10-6 to < 10-5 ≥ 10-2 to < 10-1

The safety integrity requirements of a system impose corresponding requirements on its
component parts, and IEC 61508 defines ‘hardware safety integrity’ and ‘systematic safety
integrity’ as influencing factors. The latter includes the effects of all systematic aspects and
includes ‘software safety integrity’. The standard does not specifically define ‘data safety
integrity’ but following our treatment of data as a separate entity this seams a reasonable
extension. Within this paper we refer to data safety integrity as data integrity.

While integrity requirements are more than just a set of target failure rates, these targets are of
importance. In an arrangement consists of several component parts, the overall number of system
failures will be equal to the sum of the system failures produced by each component. Therefore,
if a system consists of hardware, software and data elements, the overall target failure rate may be
apportioned to provide separate failure rates for each element. This implies that in a data-
intensive system of a particular SIL, one aspect of the data integrity requirements should be that
data errors should not produce system failures at a rate greater than that allocated to the data
component. It also implies that the data will require a target failure rate that is lower than the
figure given for the corresponding SIL in Table 1.

While it might seem obvious that data should not cause system failures at a rate greater than the
target system failure rate, the survey suggests that this requirement is rarely explicitly applied to
data within data-intensive systems. One reason for this (apart from the observed tendency to
ignore data generally) may be the problems involved in demonstrating that such a requirement
has been satisfied. It is generally accepted that it is not possible to demonstrate that a system
meets these target failure rates by testing along (except perhaps for low SIL and probably small,
simple systems) and so confidence must be gained from a combination of dynamic testing, static
testing and evidence from the development process. Over the years the various safety-related
industries have gained considerable experience in assessing the safety of software-driven systems.
A wide range of static code analysis tools are available to investigate the properties of software,
and standards such as IEC 61508 give detailed guidance on which development techniques are
appropriate for systems of each SIL. Using these techniques, together with appropriate dynamic
testing, it is possible to have reasonable confidence that the target failure rates have been
achieved. However, the situation with regard to data-intensive systems is very different. Few
static tools are available to investigate the correctness of data, and little guidance is available on
the development techniques appropriate for such systems. Given this situation it is difficult to see
how a system developer can reasonably demonstrate that their data-driven system will satisfy
these requirements.

A further problem with data-intensive systems relates to the changing nature of data. While the
hardware and software elements of a system are normally fairly consistent, the data is often
continually or continuously changing. This means that the developer must be able to demonstrate
not only that the system satisfies the appropriate target failure rate, but also that it will continue to
do so with any appropriate set of data. If the developer is unable to do this, then presumably the
system should be re-validated each time the data is changed (which would normally be
completely impractical).

Data supply chains

The data used within data-intensive systems may be supplied to the system in a number of ways.
In some cases the data may be developed specifically for the application during the development
phase, while in others it may be produced at installation time to configure a system for a
particular installation. Data may also be input directly by an operator while the system is off-line
or in use. In many cases data-intensive systems form part of a hierarchy of systems where data is
supplied by other systems. In this last situation data may be produced on one system and then be
transmitted (perhaps being modified or reconfigured) by a range of machines before reaching its
final destination. Where data-intensive systems are linked to a distributed information system,
the same data may be used by a range of machines for very different purposes. Under these
circumstances the requirements of the data (including the integrity requirements) will vary
between these machines. For example, in a railway system, data that represents the current
position of the trains is used by signaling control systems (where its use is safety-related) and also
by passenger information systems (where it is not).

The fact that data may be produced separately from the target system leads to the concept of a
data supply chain which includes all the elements involved in producing, communicating,
preparing and formatting the data, before it is supplied to the system that will use it. RTCA DO
200A [ref. 8] describes aeronautical data chains, and provides much useful guidance in this area.

The existence of a chain of elements responsible for the supply of data greatly complicates the
process of defining data requirements, and ensuring its quality and integrity. It also raises the
issue of who is responsible for achieving the required integrity within the data?

Responsibilities for achieving data integrity

In large systems several elements, or participants, may be involved in the supply of data, and this
may well involve a range of different organizations. Since the same data may be used for a range
of purposes, it is essential that it satisfies the requirements of each application. Who then bears
the responsibility for ensuring that this is the case?

RTCA DO 200A says:

“When the achievement of data quality depends upon the quality of data obtained
from a previous participant, then either the data accepted from the previous
participant must be validated to the required level, or an assurance of data quality
must be sought from that pervious participant. For the majority of aeronautical
data there is no benchmark against which the quality of data accepted from a
previous link can be validated. The need to obtain assurance of the data quality
will therefore normally flow back through the system until it reaches the originator
of each data element. Consequently, reliance must be placed upon the use of
appropriate procedures in every stage of the process.”

This extract raises several interesting points. Firstly, it highlights the problems of validating data
within an application – in many cases it is very difficult to determine the correctness of data
without reference to its source. Secondly, it places the responsibility for ensuring data integrity
on the end-user of the data. This would seem appropriate since it is the end-user who bears
ultimate responsibility for the safety (and the functionality) of the system, and because only the
end-user is in a position to determine whether the data meets the data requirements. In this case it
is assumed that the end-user ensures data integrity by validation of the data supply chain. While it
may seem logical for the responsibility for data integrity to rest with the end-user, as the supply
chain becomes longer this responsibility becomes increasing difficult to exercise. Tillotson
[ref. 9] suggests that in such cases the responsibility for data integrity may need to rest at the data
source. He observes that where data entry occurs 3, 4 or perhaps 5 systems away from where it is
used, the end-user’s ability to ensure integrity becomes diminished. Under such circumstances,
he suggests, responsibility must lie with the data originator. Unfortunately, the different uses of
the data make this problematic.

Discussion

It is clear that many issues relating to the preparation and use of data are not being appropriate
addressed. Data is increasingly being used in safety-related applications, and yet the various
standards in this area say almost nothing about its requirements and development. In most
standards data is assumed to be part of the software, yet the general guidance given on software
does not address issues that are unique to data.

Perhaps the most worrying issue is that data is often not subjected to thorough hazard and risk
analysis. This masks the significance of data to the safety of the system, and in turn reduces its
perceived importance. In the absence of identified hazards the data is seen as unimportant, and
appropriate safety requirements are not imposed.

Many of the problems associated with data may be tackled by identifying data as a distinct system
element. This emphasises the importance of data and simplifies the task of preparing specific
guidance. Giving data its own development lifecycle can ensure that it is subjected to appropriate
hazard and risk analysis, and can enforce the assignment of data safety requirements. The

integrity requirements applied to the data will then be used to determine appropriate development
targets and methods.

Unfortunately, the assignment of requirements and targets does not solve all the problems
associated with data. It is meaningless to assign a target failure rate to the data of a system unless
we are in a position to demonstrate that this target has been achieved. For all but the lowest
levels of safety integrity the target failure rates are too demanding to be demonstrated by dynamic
testing alone and it is necessary to use other methods to gain confidence in the integrity of the
system. When considering software we achieve this additional confidence through the use of an
appropriate development process, including the use of dedicated static test tools. However, in the
area of data we have little knowledge of the effectiveness of different development methods and
few tools to aid our work.

Experience shows that data-intensive systems are often relatively complex. They often form part
of a hierarchy of computers that interchange data of various forms. This interchange introduces
multiple interfaces, each capable of introducing errors into the data that crosses it. Validation of
such systems is extremely difficult. One approach would be to consider the hierarchy as a single
entity and to attempt to validate the arrangement as a whole. This is generally impractical, partly
because of the size of the resulting system, and partly because the hierarchy is likely to include
large, corporate information systems that are not themselves safety-related and are not designed
to permit validation. A more practical approach is to consider the safety-related sub-systems as
self-contained entities and to validate them individually. However, where these are data-intensive
systems this is still problematic. In most cases the safety of these systems will be dependent on
the data that they receive from other machines within the hierarchy. Since some of these
machines may have a relatively low level of integrity it may not be possible to rely on these
external elements to produce adequate data integrity.

One approach to the validation of such data-intensive systems would be to partition them so that
the data represents an effectively isolated partition. The system would then be validated to show
that the system provides adequate safety and integrity for any valid data set. It would then be
necessary to validate incoming data to ensure that it satisfies the appropriate safety and integrity
requirements. However, despite the elegance of this approach it also presents problems. Firstly
because it may be extremely difficult to prove that a system is safe for any valid data set, and
secondly because validation of data is often very difficult. This latter point is illustrated by the
quotation from DO 200A given earlier, which states that “For the majority of aeronautical data
there is no benchmark against which the quality of data accepted from a previous link can be
validated”.

There is urgent need for additional work on the role of data in safety-related systems. This is
needed to collect experience from a range of industries and to produce both generic and industry
specific guidance on how data should treated. In particular, work is needed on the validation of
data and data sources. There is also a need for additional tool support in this area.

Conclusion

We are increasingly seeing the use of data-intensive systems within safety-related applications.
The safety of such systems is determined by all its constituent parts – including its data.
Unfortunately, there is much evidence to suggest that data is not treated with the same care as
other system components. In particular: data is often not subjected to hazard of risk analysis; data
is generally not given specific safety or integrity requirements; and data is often not subjected to
rigorous verification or validation. A possible reason for these omissions is that data is a largely

‘forgotten’ system element. It is not specifically addressed within the various standards in this
area, and very little guidance is available within the literature.

One way of ‘raising the profile’ of data is to identify it as a distinct system component and to
assign to it a dedicated development lifecycle. This would ensure that it was not forgotten during
the development process and would simplify the task of providing appropriate guidance and
requirements. Data should be subjected to appropriate hazard and risk analyses and any identified
hazards should be reflected in the system requirements, including in the data safety requirements.
Data should also be investigated to determine its impact on safety and appropriate data integrity
requirements should be allocated.

Data requirements include consideration of data quality, which reflects its fitness for purpose.
Where data items represent measurements or other analogue quantities, quality will include
factors such as accuracy and resolution. However, for many digital quantities these terms are
meaningless. Thus the nature of data quality reflects the form of the data items concerned.

Since data errors have the possibility of creating systems failures, requirements of system
integrity will impose requirements of data integrity. IEC 61508 proposes target failure rates for
systems of different safety integrity levels and these in turn imply limits to allowable failure rates
as a result of data errors. Data integrity requirements will also determined the development
methods that are appropriate for the data and may influence the choice of architecture used.
Systems with high data integrity requirements may need to use data fault detection or data fault
tolerance techniques to achieve the required system failure rates.

Data is often delivered to a data-intensive system through some form of data supply chain. In
complex systems this chain may involve several computers and perhaps several organisations.
Since the same data may be used for a range of purposes, it is essential that it satisfies the
requirements of each application. It also raises the issue of who is responsible for achieving the
required integrity within the data? Standards such as DO 200A assign this responsibility to the
end-user of the data but in some cases it will be very difficult for the end-user to guarantee this
integrity. Some workers consider that in some cases the responsibility for data integrity must lie
with the originator of the data.

While the assignment of data safety requirements is a necessary step in achieving overall safety, it
is also necessary to demonstrate that these requirements have been met. Unfortunately this is
often very difficult. Data integrity requirements usually require the developer to demonstrate a
system failure rate that is lower than can be demonstrated using testing alone, and at present we
have few process-related measures that increase our confidence in our data development methods.

Data-intensive systems often form part of a large hierarchy of computers that often includes
corporate information systems as well as safety-related systems. Data is interchanged between
these computers and may be used for different purposes within different machines. This
complexity causes tremendous problems for the verification and validation of any safety-related
systems within this hierarchy. At present little guidance is available on appropriate methods of
tackling this problem, but this paper suggests that system designers should attempt to partition
their systems such that data represents an effectively isolated partition. Attempts should then be
made to show that the system is safe for any valid set of data, and to validate all data before, or
as, it enters the system.

Many problems exist in the use of data-intensive systems within safety-related applications and
much work is needed in this area.

References

1. Neil Storey and Alastair Faulkner “The Role of Data in Safety-Related Systems”, Proc. 19th
International System Safety Conference, (Huntsville 2001).

2. IEC 61508 Functional Safety of electrical / electronic / programmable electronic safety-
related systems (Geneva: International Electrotechnical Commission, 1998).

3. RTCA DO 178B / EUROCAE ED-12B Software Considerations in Airborne Systems and
Equipment Certification (Washington: Radio Technical Commission for Aeronautics, Paris:
European Organisation for Civil Aviation Electronics, 1992).

4. Interim Defence Standard 00-55 The Procurement of Safety Critical Software in Defence
Equipment. (Glasgow: Directorate of Standardisation, 1991).

5. International Standard 880 Software for Computers in the Safety Systems of Nuclear Power
Stations. (Geneva: International Electrotechnical Commission, 1986).

6. RIA 23 Safety Related Software for Railway Signalling (Consultative Document) (London:
Railway Industry Association, 1991).

7. Neil Storey and Alastair Faulkner, “Data Management in Safety-Related Systems”, Proc. 20th
International System Safety Conference, (Denver 2002).

8. RTCA: DO 200A Standards for Processing Aeronautical Data, (Washington: Radio Technical
Commission for Aeronautics, 1998).

9. Tillotson J., “System Safety and Management Information Systems”, Aspects of Safety
Management: Proceedings of the 9th Safety Critical Systems Symposium, (Bristol, 2001).

Biographies

Neil Storey, B.Sc., Ph.D., FBCS, MIEE, C.Eng. School of Engineering, University of Warwick,
Coventry, CV4 7AL, UK. Tel. - +44 24 7652 3247, fax - +44 24 7641 8922, email -
N.Storey@warwick.ac.uk.

Neil Storey is a Director within the School of Engineering of the University of Warwick. His
primary research interests are in the area of safety-critical computer systems. He is a member of
the BCS Expert Panel on Safety-Critical Systems and has a large number of publications
including both journal and conference papers. Neil is author of several textbooks on electronics
and safety, including “Safety Critical Computer Systems” published by Addison-Wesley.

Alastair Faulkner, MSc., MBCS, C.Eng; CSE International Ltd., Glanford House, Bellwin Drive,
Flixborough DN15 8SN, UK. Tel. +44 1724 862169, fax +44 1724 846256, email - agf@cse-
euro.com.

Alastair Faulkner holds an MSc degree in Computer Science from Salford University and is a
Chartered Engineer. His background is in software development mainly concerned with
computer-based command and control systems. Alastair’s research interests are in the safety
management of data-driven safety-related systems. He is also a Research Engineer with the
University of Warwick and is studying for an Engineering Doctorate.

	Conclusion

