
Design for Safety
Neil Storey

University of Warwick,
Coventry, UK

1 Introduction
Perhaps an appropriate starting point for a paper entitled ‘Design for Safety’ is to
define what we mean by ‘design’ and to see how considerations of ‘safety’ are
likely to affect this task. According to the STARTS Guide [STARTS 1987] the
design process may be divided into four distinct activities:

• abstraction: the operation of generalising, of identifying the essentials;
• decomposition: the process of reducing an object into a number of simpler,

smaller parts; analysis of interactions, interfaces and structures;
modularization;

• elaboration: the operation of detailing, adding features;
• decision making: identification and selection of alternative strategies.

The goals of the design process are usually manifold. Clearly the resulting
system must satisfy its functional requirements, and will normally also have to
fulfil certain non-functional requirements which might include such factors as:
size; weight; cost and power consumption.

When the operation of a system has implications for safety, the system will also
have a set of safety requirements. These will define what the system must and must
not do in order to ensure the safety of the system. These safety requirements sit
alongside the functional requirements to define what the system developer must
achieve.

The ability of a system to satisfy both its functional and its safety requirements
is limited by the presence of faults within the system. Although definitions of this
term vary, here the term ‘fault’ is taken to mean any kind of defect within the
system. Faults may be

• random: such as hardware component failures
• systematic: such as software or other design faults.

Random faults may be investigated statistically and given appropriate data it may
be possible to make predictions concerning the probability of a component failing
within a given period of time. Systematic faults are not random and are thus not
susceptible to statistical analysis. It is therefore much more difficult to predict their
effect on the reliability of a system.

Faults may be classified in a number of ways. For example they may be
subdivided by considering their nature, their duration or the amount of the system
that they affect (their extent). When considering design issues it is convenient to
look at three distinct forms of fault, these are:

• random hardware component failures;

• systematic faults in the design (including both hardware and software);

• errors in the specification of the system.

The task of producing a dependable (or safe) system, can be viewed as the
process of coping with these various forms of fault in an efficient manner. This can
be seen as a process of fault management [Storey 1996] and appropriate design
techniques can play a crucial part in this process. Fault management techniques
may be divided into four groups of techniques:

• fault avoidance

• fault removal

• fault detection

• fault tolerance

Fault avoidance techniques aim to prevent faults from entering the system
during the design stage. The avoidance of faults is the primary aim of the entire
design process and we shall look at several aspects of this task in this paper. Fault
removal attempts to find faults within a system before it enters service. Such
activities often come under the heading of ‘verification and validation’. Fault
detection techniques are used during service to detect faults within the operational
system so that their effects may be minimised. These may include both hardware
and software techniques. Fault tolerance aims to allow a system to operate
correctly in the presence of faults and again, both hardware and software methods
may be used. None of these approaches offers a total solution to the problems of
fault management and so most critical projects will incorporate a combination of
techniques.

When considering the design aspects of a project we can identify three
approaches to fault management that are of particular importance:
System Architecture The system architecture has an enormous effect on the ability
of a system to tolerate faults within it. It can provide some protection against
random component failure and some forms of systematic fault. It does not usually
tackle the problems associated with specification faults.
Reliability Engineering This is primarily concerned with the susceptibility of a
system to random hardware component failures. However, some engineers believe
that these techniques may also be applied to some systematic faults.
Quality Management Considerations of quality cover all aspects of a system’s life
and are therefore of great importance to fault management.

1.1 Design within the Development Lifecycle
Typical models of the development lifecycle often compartmentalise design into a
small number of distinct phases. This is illustrated in Figure 1 which shows the
well known ‘V’ lifecycle model.

Specification

Architectural
Design

Module
Design

 Integration
and Testing

System
Verification

System
Validation

 Construction
and Testing

System

Module

Figure 1 A typical ‘V’ lifecycle model.

In practice, design activities are carried out throughout the development lifecycle.
In order to produce a cost estimate for the development of a system some
rudimentary design must be performed at a very early stage of the work, often as
part of a feasibility study. The main design work takes place within the ‘top-level’
and ‘detailed’ design phases, but later stages of the work will often have a
significant design component to produce modifications and improvements. Even
during the maintenance phase design modifications may be needed for system
upgrading and to remove ‘bugs’. Thus design performs an important role in
ensuring safety throughout the life of a product or system.

2 Techniques for Achieving Dependability
While there are many techniques for improving the dependability of a system, here
we will concentrate on two techniques of great importance to system design. These
are the use of fault tolerance and reliability engineering.

2.1 Fault Tolerant Techniques
All real systems are susceptible to faults. The goal of fault tolerance is to design a
system in such a way that these faults do not result in a system failure. All methods
of fault tolerance are based on some form of redundancy. This involves having
more complexity within a system than would be required in the absence of faults.
Most early forms of fault tolerance used additional hardware to provide protection
against hardware component failures. More recently, many forms of redundancy
are used to provide protection against a wide variety of faults.

The most widely used forms of redundancy are:

• Hardware redundancy

• Software redundancy

• Information redundancy

• Temporal redundancy

Practical fault tolerant systems use a judicious mix of techniques to provide
protection against a range of possible faults.

A simple example of hardware redundancy is the triple modular redundancy
(TMR) arrangement of Figure 2. This uses three identical modules which each
receive the same input signals. If all the modules are functioning correctly they
will all produce identical outputs, and any difference between their outputs will
therefore indicate the failure of one of the modules. A voting arrangement is used
to remove the effects of any single failure by taking the majority view in the case
of disagreement and producing this at its output. The system can therefore tolerate
the failure of any single module without this affecting the system’s output.

Module 1

Module 2

Module 3

Voting
element

OutputInput

Figure 2 A Triple Modular Redundancy (TMR) arrangement.

The TMR arrangement illustrates the basic concept of redundancy in that three
modules are used in a system where a single module could provide the required
functionality. It can also be used to illustrate one of the potential problems
associated with all forms of redundancy - that of common-mode faults. The TMR
approach is based on an assumption that faults are likely to affect the
various modules independently. This technique provides some protection
against random hardware component failures but not against any systematic faults.
Since the three modules are identical any systematic fault (such as a software fault)
will affect each module in the same way. In this situation the outputs of the
modules may be identical but incorrect, and the redundancy achieves nothing.
Failures as a result of similar faults in each module are referred to as common-

mode failures. Thus TMR provides protection against random component failures,
but not against systematic design faults or specification errors.

Common-mode problems are normally tackled by the use of design diversity
where the redundant modules have the same functionality, but are designed by
different teams to try to prevent common faults as a result of common design
mistakes. This tackles the problem of common-mode failure at the cost of
increased development effort. Redundancy with design diversity can provide
protection against both random and some systematic faults, but generally does not
tackle the problems of errors in the system’s specification, since the same
specification will normally be used for each of the diverse implementations. Also,
it should be noted that design diversity does not completely eliminate common-
mode design errors since it has been demonstrated that different design teams are
likely to make similar errors.

2.1.1 Fault Detection Techniques
Many fault tolerant techniques rely on the use of some form of fault detection
mechanism. These look for errors produced during the operation of the system.
Examples of fault detection methods include:

• Functionality checking
• Consistency checking
• Signal comparison
• Checking pairs
• Information redundancy
• Instruction monitoring
• Loopback testing
• Watchdog timers
• Bus monitoring
• Power supply monitoring

It is not within the scope of this paper to describe each of these techniques in
detail. An overview of these methods can be found in [Storey 1996].

2.1.2 Hardware Fault Tolerance Techniques
Hardware fault tolerance can be achieved using three basic techniques:

• Static redundancy
Uses some form of voting network as in the TMR arrangement

• Dynamic redundancy
Relies on some form of fault detection and reconfiguration

• Hybrid redundancy
Uses a combination of the above techniques

Static Redundancy
Static redundancy uses a number of redundant modules and some form of

voting arrangement as in the triple modular arrangement described earlier. Use of
three modules in a TMR scheme provides a system that will work correctly if a
single module fails, and because of the effects of the voting network, the effects of
the failure are masked from the outside world. If more redundant modules are used
it is possible to produce a system that can tolerate a greater number of module
failures. Such systems are given the generic name of N-modular redundant (NMR)
systems. For example an NMR arrangement with 5 modules can tolerate the failure
of two modules.

A potential problem with static arrangements is the possibility of a single-point
failure within the voter. If the inputs come from a single sensor this also represents
a possible cause of single-point failure. Fortunately, the voter is often a very
simple arrangement and it is possible that this may be sufficiently dependable to
produce an acceptable performance. Similarly, some simple sensors may have a
very high dependability. However, in critical applications it is more common to
use multiple sensors and multiple voters as shown in Figure 3. Such an
arrangement will tolerate the failure of a single module, a single sensor or a single
voter. The multiple outputs may be fed to later fault tolerant stages to form a
multiple stage TMR arrangement, or may be fed to multiple output actuators that
effectively vote at the output.

Module 1

Module 2

Module 3

Voting
Element

Voting
Element

Voting
Element

Input 1

Input 2

Input 3

Output 1

Output 2

Output 3

Figure 3 A TMR arrangement with multiple inputs and voters.

Dynamic Redundancy
Dynamic redundancy uses fault detection and reconfiguration to achieve fault

tolerance rather than voting. This results in an arrangement that requires less
redundant hardware to achieve the same degree of fault tolerance, but places great
reliance on the fault detection methods used. Also, in many cases, once a fault has
been detected it will take a finite amount of time to reconfigure the system to
remove the effects of the faulty unit. During this time the output of the system may
be incorrect. Dynamic redundancy does not provide fault masking.

A simple example of dynamic redundancy is the standby spare arrangement
shown in Figure 4. Here one module is operated in conjunction with some form of
fault detection mechanism. While no fault is detected the output from this module
is fed to the system’s output by a switch network. If a fault is detected the
detection mechanism will reconfigure the system so that the switch takes its output
from the standby module.

Module 1

Module 2

Fault
Detector

Input
OutputSwitch

Figure 4 A standby spare arrangement

The process of reconfiguration will cause a temporary disruption of the output
while the output is switched. This disruption can be minimised by the use of a hot
standby where the backup module is running continuously in parallel with the
active module. This permits the operation to be switched very quickly to the
standby unit. Unfortunately a disadvantage of this arrangement is that the standby
module is subject to the same operating stress as the active unit and so will wear in
a similar manner. It will also consume power at the same rate. An alternative
strategy uses a cold standby arrangement where the backup module is unpowered
while not it use. This reduces power consumption and wear in the unit but means
that the transition to the alternative module may take much longer in the event of a
failure of the active unit.

The standby spare arrangement permits a single module failure to be tolerated
using a total of two modules, rather than the three required using TMR, and adding
extra redundant modules allows more failures to be tolerated. For example, a
dynamic arrangement using three modules (an active module plus two spares)
permits two module failures to be tolerated. Thus dynamic redundancy offers
advantages in respect of the amount of redundant hardware required. However, the
success of the arrangement relies on the effectiveness of the fault detection
hardware.

Another example of dynamic redundancy is the self-checking pair arrangement.
Here two identical modules are fed with the same input signals and their outputs
are compared as a form of fault detection. The output from one of the modules is
passed to the next stage and the output of the comparator is used as a failure
detection signal. The signal comparison may be performed in hardware or in
software. The self-checking pair does not in itself produce fault tolerance, but does

provide a block with built-in fault detection that can be used in a dynamic fault
detection arrangement. A simple self-checking pair is shown of Figure 5.

Output

Input

Failure detected

Module 1

Module 2
Comparator

Figure 5 A self-checking pair

Hybrid redundancy
We have seen that static redundancy provides fault masking but requires more

redundant hardware than dynamic arrangements. Hybrid redundancy uses a
combination of voting, fault detection and reconfiguration to achieve some of the
advantages of both techniques. There are many forms of hybrid redundancy but
most can be generalised to some form of N-modular redundancy with spares as
shown in Figure 6.

Module 1

Module 2

Module 3

Module N

Spare 1

Spare 2

Spare M

1

2

3

N

OutputSwitch VoterInputs

Disagreement
detector

Figure 6 N-modular redundancy with spares

2.1.3 Software Fault Tolerance Techniques
Fault tolerance can be achieved not only through the use of redundant hardware,
but also through the use of appropriate software techniques. Many hardware fault
tolerant arrangements make use of a number of identical modules. As discussed
earlier this provides protection against random component failures within the
modules but does not tackle the problems associated with systematic design faults.
Software faults are always systematic, so the simple duplication of software does
not provide any protection against such faults. In order to achieve fault tolerance
we must use diverse software.

There are two common methods of achieving fault tolerance within software,
these are:

• N-version programming

• Recovery blocks

Unfortunately, there is not scope within this paper to describe these techniques in
detail. However, it is worth noting that both approaches make use of design
diversity and that N-version programming [Avizienis 1985] can be thought of as a
software equivalent of the static hardware techniques discussed earlier, while
recovery blocks [Anderson 1990] are similar in many ways to dynamic methods of
hardware fault tolerance.

2.2 Reliability Engineering
Components that fail as a result of non-systematic faults will fail at a random time.
For a given device it is not possible to predict when failure will occur, but it is
possible to quantify the rate at which members of a family of components will fail.

Systematic faults are not random and therefore are not subject to statistical
analysis. We have also seen that fault tolerant techniques based on the use of
identical hardware modules provide no protection against systematic faults. For
these reasons systematic faults represent a very serious problem for the system
designer. In computer-based systems one of the most common forms of systematic
faults is the software ‘bug’.

Reliability engineers are divided on how to approach the problems of software
faults. Some say that since they occur each time a given piece of code is executed
they are totally predictable and so are not susceptible to statistical analysis. This
leads to the view that we cannot apply a figure to the reliability of software. An
alternative view is held by engineers who feel that it is appropriate to use statistical
techniques with software. They argue that because of the complexity of software,
faults could take an almost unlimited number of forms and that consequently their
distribution can be considered to be random. This leads to the view that unknown
software faults are sufficiently random to allow statistical techniques to be applied
and hence to the belief that reliability engineering is of relevance to software. For
the moment we will ignore the issue of the applicability of these techniques and
look instead at the analytical methods themselves.

When reliability is treated quantitatively it is normal to define it as the
probability of a component or system working correctly over a given period of
time. Since reliability is a function of time it is common to give it the symbol R(t).

Closely linked to considerations of reliability is the failure rate of a component.
Experience shows that for a wide range of components, such as electronic devices,
the failure rate has a distinct time varying nature as shown in Figure 7. For obvious
reasons this characteristic shape is described as a ‘bathtub’ curve.

Failure
rate

Time

Useful life Wear outBurn in

Figure 7 Typical variation of failure rate with time

The curve shows three distinct phases during the component’s life. In the early
stages the device suffers a high failure rate as a result of ‘infant mortality’ owing to
the presence of manufacturing faults not detected during testing. This is followed
by a region of approximately constant failure rate. This is termed the ‘useful life’
portion of the curve and manufacturers will aim to use the component only during
this phase. Towards the end of the component’s life the failure rate rises again
during what is termed the ‘wear out’ phase. In critical applications components
should be replaced before they enter this stage.

It can be shown that during the constant failure rate stage the reliability of a
component is related to its constant failure rate (λ) by the expression

R t e t() = −λ

This relationship is termed the exponential failure law, and shows that when the
failure rate is constant, the reliability falls exponentially with time.

The failure rate of some components is not constant but varies with time. The
failure of mechanical components due to fatigue and failures due to software bugs
have time variant characteristics. This form of behaviour may be described by the
Wiebull distribution which is of the form:

βη)/()(tetR −=

While time-variant failure rates are of great importance, here we will restrict
ourselves to looking at components that exhibit a constant failure rate.

2.2.1 Reliability Modelling
A common problem in reliability engineering is to predict the reliability of a
complex system from a knowledge of the failure characteristics of its components.
One way of tackling this problem is by the use of ‘combinational modelling’.
Many text books give a good introduction to this technique (for example [Lewis
1996]) and here we will look at some of the results that may be obtained using this
approach rather than consider the technique itself.

One of the results that may be obtained using combination modelling is an
estimate of the overall reliability of a TMR arrangement RTMR(t) in terms of the
reliability of the individual modules Rm(t). This relationship is

)(2)(3)(32
TMR tRtRtR mm −=

This equation ignores the effects of the voter although combinational modelling
can be used to describe the effects of voter failure on reliability.

To illustrate the characteristics of this expression let us look at some sample
values. For example, if for a given period of time t the reliability of a module is
equal to 0.95, then the expression shows that over this period of time the reliability
of a TMR arrangement constructed using three identical modules would be 0.993.
It can be seen that the redundant arrangement has created a significant increase in
reliability. However, it should not be assumed that this will always be the case.
Consider, for example, a TMR arrangement using three modules each with a
reliability of 0.4. In this case the reliability of the overall arrangement is now
0.352, which is lower than that of the individual components. In order for a TMR
arrangement to give an increase in reliability, the individual modules must have a
reliability of greater than 0.5. Reliability cannot be achieved by combining
unreliable components.

Another point to note is that reliability is a function of time and that the
reliability of all components falls as they are used over longer periods.
Consequently the reliability of all components will fall below 0.5 at some point in
their life. Therefore at some stage a TMR arrangement will always be less reliable
than an implementation using just a single module. This emphasises the
importance of a careful choice of system architecture and the need to consider
carefully the period of time over which reliability calculations are performed.

Combinational modelling can also be used to estimate the reliability of a system
with dynamic redundancy. For example, a hot standby spare arrangement using
two identical modules each of reliability Rm(t), has an overall reliability of:

R t R t R t C R tm m m m() () [()] ()= + −1

where Cm is the is the fault coverage of the module and represents the probability
of a fault within the module being detected. It can be seen that the reliability of the
system is greater than that of an individual module by an amount that is determined
by the ability of the system to detect a module fault. The expression for the
reliability of a cold standby arrangement is somewhat different from the above
equation, but is of the same basic form.

Inherent in the above calculations is the assumption that failures within the
various modules are completely independent. This will be the case for random
component failures, but not for systematic faults which could affect all the
modules simultaneously. We have also assumed that each module has a constant
failure rate.

2.2.2 Reliability Prediction
Clearly it would be useful to be able to predict the reliability of a system at the
design stage. In the last section we saw how we could determine the reliability of a
system from the characteristics of its components, but this still leaves us with the
problem of predicting the failure rate of its components, and of subsystems that
have yet to be built.

The most widely used technique for predicting the failure rate of electronic
components is based on the United States Department of Defense military
handbook MIL-HDBK-217 [DoD 1992]. This aims to predict the failure rate of
components from a knowledge of their form and their operating environment. The
handbook provides models for a wide range of components which can be used to
calculate the predicted number of failures per million hours of operation from a
number of parameters. For example, the model for a simple resistor is:

λp = λbπRπQπE Failures/106 Hours

where λp is the part failure rate, λb is the base failure rate reflecting the electrical
and thermal stresses on the part and the various π terms represent environmental
and other effects. Here πR models the importance of the resistor value, πQ
concerns the quality of its manufacture and πE is an environmental factor. Values
for the various parameters are given in tables in the handbook.

The values determined using the models within the handbook can be used to
provide an indication of the expected reliability of the final system but these
should not be seen as providing an accurate estimate. They are intended to be used
to guide design choices rather than to provide an accurate estimate of reliability.

We noted earlier that engineers are divided on the applicability of reliability
measures to software. Where they are used they often aim to predict the reliability
that might be expected from a piece of software. Such techniques are usually based
on an estimate of the number of residual errors within a program. This is normally
estimated by considering the number of errors that are found during development
and attempting to extrapolate to provide an estimate of the number of remaining
errors. There are many problems with this approach since there would seem to be
no direct correlation between the number of errors within a piece of software and
its failure rate. Such factors as the form of the error, its effects and the frequency
with which it is executed will also affect failure rate. A great deal of work is in
progress in an attempt to allow the reliability of software to be predicted
[Littlewood 1993, Pyle 1991]. However, at present there is no universally accepted
method of achieving this.

2.2.3 Reliability Assessment
Once a system has been designed and a prototype system constructed it is
necessary to demonstrate that it meets its requirements before it goes into service.
One of these requirements will be its need for a certain level of reliability.
Unfortunately, in many cases the level of reliability required of a critical system is
beyond our ability to demonstrate by testing alone.

IEC 1508 [IEC 1995] gives a list of target failure rates for systems of different
levels of integrity. These are shown in Table 1. It can be seen that some systems
require a mean time to failure (MTTF) of 10,000 years or more. To demonstrate
this by testing is impossible. It is generally agreed that these levels of failure rate
are several orders of magnitude better than can be demonstrated using our current
techniques.

Table 1 Target Failure rates from IEC 1508

Since we cannot demonstrate these levels of performance by testing we need to
find other ways of convincing ourselves, and possibly a regulator, that our systems
meet their needs. Invariably this requires that we adopt certain design and
development methods that can give us confidence in the correctness of our system.

3 Design Issues

3.1 Hardware Design Issues
There are a great many issues of importance to the design of safety-critical
computer hardware. These include topics that we have already considered such as
fault tolerant architectures and reliability engineering, as well as other areas such
as real-time system design and EMC. In this brief paper we will look at just a few
topics which have been chosen because they have a direct relevance to safety and
because they are often ignored in the literature.

3.1.1 Microprocessor Design Faults
Modern microprocessors are extremely reliable and in most applications the
probability of failure due to an inherent fault within the chip is small compared to
the probability of failure due to other causes (such as software faults). For this
reason in most commercial applications microprocessor design faults are normally

Safety

integrity
level

Continuous mode
of operation

(probability of a dangerous
failure per year)

High demand/continuous mode
of operation

(probability of failure to perform its
designed function on demand)

4 ≥ <− −10 105 4to ≥ <− −10 105 4to
3 ≥ <− −10 104 3to ≥ <− −10 104 3to
2 ≥ <− −10 103 2to ≥ <− −10 103 2to
1 ≥ <− −10 102 1to ≥ <− −10 102 1to

ignored. However, in highly critical applications all possible faults must be
considered.

Faults within the design of the processor are systematic and so are not tackled
by simple fault tolerant techniques using identical modules. Also, the complexity
of modern devices makes the variety of possible faults almost infinite, while
making exhaustive testing impossible.

While there are a great number of possible forms of design faults, these may be
divided into two main categories:

• Failure of the circuit to correctly implement its intended function

• Failure of the documentation to correctly describe the circuit’s operation

It might seem at first sight that only the first of these classes represents what might
be termed design faults, since the second is simply a weakness in the
documentation. However, as far as the user of a processor is concerned, the manual
represents the ‘definition’ of the device, and any discrepancy between this and the
actual operation has exactly the same effect as a functional error.

While there is little documentary evidence on the statistics of microprocessor
faults it is clear that these are most likely to be associated with instructions that see
limited use or with events that occur infrequently. This is because such faults are
likely to go undetected during testing. In one of the few papers on this topic
Wichmann reported that a particular processor’s operations were completely
incorrect for certain instructions that were not generated by the associated C
compiler [Wichmann 1993]. This was no doubt because the manufacturer’s testing
procedures involved the execution of large numbers of test programs which were
all written in C.

Experience shows that early versions of a device have significantly more
problems than later releases. This is because manufacturers progressively remove
faults located in service. However, the fact that processors are continually
evolving does itself pose a problem for the system developer, since each new
version will have slightly different characteristics. This can invalidate testing
performed using earlier parts.

Because major design errors would be discovered during system development,
it follows that most microprocessor faults are relatively subtle. For this reason they
often go undetected when the device is incorporated into a new application. Well
known examples of microprocessor faults include the indirect jump instruction in
the 6502 processor which operates incorrectly if the indirect address happens to
straddle a page boundary, and the widely publicised divide problem in the Pentium
processor which related to a fault in a rarely executed arm of a case statement.

In many cases processor design faults are quickly located and design teams who
have experience with a particular device find methods of working around the
problem. However, the faults are rarely documented and so this information is not
distributed to other users. In critical applications this situation is very dangerous.

3.1.2 Choosing a microprocessor
The choice of a processor for any real-time application will involve a large number
of factors. These will include the processing power required and any particular
architectural requirements. In safety-related applications there are also
considerations related to the integrity requirements of the system. From the last
section it is clear that the presence of known design faults within a processor is
likely to affect our choice but there are also other issues of importance.

Certain processors have characteristics that, though not design faults as such,
make them unsuitable for use in critical applications. Though obsolete now, a good
example of such a device is the Motorola 6801 processor. This has within its
instruction set a test instruction that fetches an infinite number of bytes from
memory. This produces a regular pattern on the address bus which is extremely
useful during testing. This instruction is not intended for normal use and does not
appear in the list of instructions given in the manual. However, if this instruction is
executed inadvertently (perhaps as a result of a noise-induced jump error) it
represents a ‘black-hole’ that is impervious to both maskable and non-maskable
interrupts. Recovery from this situation can only be achieved by resetting the
device. Clearly a watchdog timer connected to the reset line would protect the
system from such an event. However, it should be remembered that this instruction
is undocumented, and a designer could perhaps be forgiven for connecting the
watchdog timer to the non-maskable interrupt line to allow a unique handler to be
used.

Since details of design faults and other unacceptable features are rarely
documented, how does a designer choose a processor for a given critical
application? In some cases there will be experience within a company or
organisation that can guide this choice. If not, then engineers should be guided by
the choices being made by other companies. While it is unlikely that competing
companies will publicise the components they are using, one can tell which
components are being widely used by looking at the support tools available.
Developing safety-critical systems requires some very specialist tools - particularly
in the area of software testing. These tools are generally specific to one
microprocessor and are very expensive to develop. Consequently they are only
available for a small number of components that are widely used in critical
systems. Thus looking at tool availability provides a good guide to component
suitability for critical applications in general. It does not however, show that a part
is ideal for your particular application.

In general the devices that are widely used in critical applications are not ‘state-
of-the-art’ components. Designers usually prefer to use well tried and tested
components rather than the newest parts. In such applications a ‘track record’ is
often far more important than pure processing power.

3.2 Software Design Issues
In computer-based systems much of the complexity is implemented within the
software and for this reason many of the associated problems are software-related.
Some engineers see the task of developing a critical system as largely the problem

of getting the software right. Unfortunately getting software to work correctly is
not easy and even simple programs usually do not work first time. In non-critical
applications the task of software generation is generally an iterative process of
writing, testing and modifying the code until it appears to work. The development
process ends when the software stops failing the series of tasks being used to test
it. Thus the ‘dependability’ of the software is determined almost exclusively by
how it is tested.

Unfortunately testing is notoriously difficult and exhaustive testing is almost
always impossible. When developing a critical system this kind of ‘dynamic’
testing is supplemented by various forms of ‘static’ testing which look at the
characteristics of the code without executing it.

While the testing of safety-critical software is not within the scope of this paper,
considerations of how a system is to be tested have many implications for the way
it is designed. Here we will look at one such issue - the choice of programming
language to be used.

3.2.1 Choice of Programming Language
In commercial applications important considerations in the choice of a
programming language include such factors as productivity, efficiency and
portability. For this reason, most commercial software is written in languages such
as C, C++ and Java.

In critical applications the above considerations are also going to be of
important, but other factors will also need to be considered. These include the
characteristics of the language and the availability of support tools.

Language Characteristics
Programming languages differ wildly in their appropriateness for use in safety-

related systems. Carré et al. identified six factors that influence the suitability of a
language for high-integrity applications [Carré 1990]. These are:

•Logical soundness

•Complexity of definition

•Expressive power

•Security

•Verifiability

•Bounded time and space constraints

No standard programming language performs well in all these areas although some
(such as Pascal and Ada) perform much better than languages such as C or C++. In
highly critical applications ‘verifiability’ is of great importance. Certain languages
allow powerful software verification tools to be used to perform a wide range of
static tests on the code to detect a range of programming errors.

Tools support
An important issue in the selection of a programming language is the quality of

the available compilers and other tools. For certain languages validated compilers
are available. While not guaranteeing perfection, validation greatly increasing our
confidence in a tool. Unfortunately, validated compilers are only available for a
limited number of languages, such as Ada and Pascal.

In addition to compilers, developers of critical systems will make use of a range
of other tools such as static code analysis packages. The static tests that can be
performed on a piece of code vary greatly depending on the language used. To aid
this process it is common to restrict the features that are used within certain
languages to a ‘safe subset’ of the language. Well structured and defined languages
such as subsets of Ada, Pascal and Modula-2 allow a great many tests to be
performed such as data flow analysis, data use analysis, information flow analysis
and range checking. Unfortunately many of these tests cannot be performed on
languages such as C and C++ .

Choosing a language for a given application
Invariably several factors will determine the language that is chosen for a given

project. In some cases the language to be used may be defined by the ‘customer’.
For example, much of the work performed for the US Department of Defense must
be performed in Ada. The various generic and industry specific safety standards
also include requirements or guidance on the choice of language. The languages
that are preferred within these documents vary between industries and with the
level of integrity required. Projects that require a very high level of integrity often
use safe subsets of languages such as Ada and Pascal. Systems with a lower safety
requirement often use full versions of Ada, ISO Pascal, Modula-2 or structured
assembly code.

Perhaps one of the most contentious issues within this field is the use of C and
C++ in safety-related applications. Some practitioners feel that these languages
should not be used at all in such systems because of their poor definition and lack
of structure. However, in some areas, such as the automotive industry, the use of C
is widespread even in safety critical applications. To try to reduce some of the
problems associated with the use of C in such situations, and to promote the use of
agreed ‘best practice’, the motor industry has recently produced a new set of
guidelines in this area [MISRA 1998].

3.3 Human Factors
When designing safety-critical systems we strive to make them as simple as
possible. Unfortunately, many systems have within them a very complex
component - a human operator. Humans have the advantages a flexibility and
adaptability but in many situations they are unreliable and unpredictable.

Many experiments have been performed to measure the error rates associated
with human operators performing a range of task. While the data produced by
these tests is very dependent on a wide range of circumstances, it is clear that the
error rates observed are much higher than one would expect from any form of

automated system. Typical values for an operator performing very simple tasks
might be one error in every 1,000 to 10,000 operations. While for more complex
tasks this error rate might increase to one error in every 10 or less operations.

In order to remove the likelihood of an accident being caused by human error it
is normal to attempt to remove the human operator from all responsibility for
safety. If an operator is needed, he or she may be given a supervisory role with the
required safety features being implemented within an automated system. While
this may reduce the probability of an accident being caused by the operator making
a mistake, it does not remove the problems of human error or reduce the
importance of human factors. Automated systems are designed, manufactured,
installed and maintained by humans, and errors by any of those involved can
influence the system’s safety. While in some cases you may be able to remove the
responsibility for safety from an operator, you generally cannot remove it from the
system developer. Thus great reliance is placed on the development strategies and
quality management structures used.

4 The Design Process
We noted earlier that design plays a part in each phase of the development
lifecycle. Here we will look at just a few elements of the design process.

4.1 Top Level or Architectural Design
The top-level architectural design phase allocates the various functional
requirements of the system to appropriate implementation structures. In safety-
related applications it is also necessary to allocate the various safety requirements,
identified in early phases of the development, to appropriate safety-related systems
or subsystems. In general these will include systems based on a number of
technologies and may include mechanical, hydraulic or electrical subsystems, as
well as both programmable and non-programmable electronic sections. Wherever
possible safety features should be implemented using the simplest possible
elements.

Top level design also involves partitioning the system functions into those to be
produced within hardware and those that are to be implemented in software. When
this has been done, the architecture of the hardware and software can be defined.
One aspect of this process is the decomposition of the system into manageable
modules. This involves the specification of the functions and safety features to be
implemented by each module and the definition of the interfaces between them. It
also involves the definition of the major data structures within the software.

One approach to system design is based on the principle of hierarchical design.
This technique, which can be applied to both hardware and software, divides the
system into a number of layers. Modules within each layer depend for their correct
operation on modules in lower levels of the structure. These in turn are dependent
on modules within lower levels.

Figure 8 A layered approach to design

This arrangement can be represented diagrammatically as shown in Figure 8.
One of the principles of hierarchical design is some form of downward-only
functional dependence. This results in layers of abstraction that allow the
functioning of lower levels to be hidden from those above it.

4.2 System Partitioning for Safety
The way in which a system is partitioned is fundamental to the provision of safety.
One of the important aspects of partitioning is that it aids comprehension of the
system. Large monolithic structures of either hardware or software are difficult to
understand and are therefore prone to errors. A well partitioned system is much
easier to understand.

A second function of partitioning is that it provides a level of isolation between
the modules. This can be used to contain faults and is fundamental to the provision
of fault tolerance. It may also simplify the task of verification by allowing modules
to be considered separately.

Because the operation of one module can affect the operation of another the
way in which the system is partitioned is of great importance. Consider the
software arrangement of Figure 9.

Input/output routines
and device drivers

High level command
and control functions

 Intermediate level routines

Safety switch Actuator

Figure 9 A poorly structured system

In Figure 9 an actuator that is capable of some dangerous effect must be activated
by a high-level routine. To do this it calls an intermediate-level routine that in turn
calls a lower-level routine, and so on, until the appropriate low-level routine is
activated. In order to maintain safety some form of safety switch is used to produce
an interlock mechanism. Before the high level routine will operate the actuator it
checks the safety switch to see that it is the appropriate state. It does this by calling
a series of intermediate-level routines, which in turn call the required low-level
routine. Provided that all elements in the system work correctly this arrangement
should be safe.

An unfortunate characteristic of the arrangement of Figure 9 is that all the
software elements involved are critical to the safety of the system. If any of the
high, intermediate or low-level routines malfunctions the actuator can be activated
dangerously.

Now consider the arrangement of Figure 10. Here the safety switch and the
actuator have been encapsulated within a single low-level module. If the high-level
routine now wishes to operate the actuator it sends a message to this low-level
routine which is equivalent to ‘operate the actuator if it is safe to do so’. Because
the low-level routine implements the complete interlock mechanism it is the only
critical module within this arrangement. If perfect isolation could be guaranteed
between the various modules, only the low-level module would be safety-related.
Since the low-level routines are generally also the simplest modules, this would
drastically reduce the amount of code that would need to be developed and tested
to a high level of integrity. In practice, complete isolation is rarely possible,
particularly between software modules, and thus all system elements are likely to
be safety-related to some extent. However, the integration of safety functions into
simple, self-contained modules that can be extensively tested, is a very attractive
design goal. Unfortunately, not all systems lend themselves to this approach and in
many cases safety functions require high level control. In such cases much of the
system becomes critical to the safety of the system.

Input/output routines
and device drivers

High level command
and control functions

 Intermediate level routines

Safety
switch Actuator

Figure 10 An improved method of system partitioning

4.3 Detailed Design
Following the process of decomposition performed in the top-level design phase
comes the detailed design of the various functions of each module. The process of
decomposition is often iterative, with modules being broken down successively
into small sub-modules, each with its own specification.

The techniques used in the detailed design phase will be greatly affected by the
overall development methods and tools being used. For example the use of formal
methods may permeate all phases of the design. We shall look at formal methods
briefly in Section 5.3. There are also several special-purpose design tools or
methods that may be used to facilitate the design process. These include such
techniques as Yourdon [Yourdon 1979], Jackson [Jackson 1983] and Mascot
[RSRE 1987].

For software, well structured languages such as Ada and Pascal greatly simply
the design process as they naturally support an iterative approach to functional
decomposition.

4.4 Safety Kernels and Firewalls
In some cases safety can be enhanced by the use of safety kernels or firewalls.

A safety kernel consists of a relatively simple arrangement, often a combination
of hardware and software. Its small size and lack of complexity enable it to be
developed into a trusted subsystem that can be used to ensure the critical safety
functions of a system. The success of this arrangement depends on the ability of
the designer to protect the kernel from outside influences. This might be achieved
through the use of separate hardware, or in the case of a software kernel, through
software partitioning.

An alternative approach is to place the components (hardware or software)
responsible for safety behind a protective firewall. When considering hardware
this could be a physical barrier to protect the critical sections from the dangerous
effects of system failure. Within software, the firewall could be a logical barrier
providing access control to stop unauthorised access or modification of critical
data or code [Leveson 1995].

4.5 Design for Maintainability
Although it may not always be immediately apparent, good maintainability is often
a prerequisite of safety. This is true not only because a system that is difficult to
maintain is likely to be badly maintained and is therefore likely to be less reliable,
but also because maintainability has a direct relationship to availability.

One factor that is often overlooked in the operation of safety-critical systems is
the impact of maintenance induced failures. Evidence from a number of sources
suggests that there is a significant probability that maintenance operations will not
be completed satisfactorily and may lead to new, and seemingly unrelated faults.
These problems are likely to be more severe in systems that are difficult to
maintain and so careful thought should be given to this aspect of the design.

Linked with this issue is the situation where attempts to increase maintainability
may decrease the safety of the system. An example might be the inclusion of built-

in test equipment (BITE) within a system. BITE speeds maintenance by
simplifying the location of faults, but requires an increase in hardware or software
and therefore inevitably reduces the overall reliability. There is therefore a trade-
off between maintainability and reliability. This needs to be considered carefully at
the design stage.

4.6 Component Reuse
The reuse of components of hardware or software makes good economic sense and
can also have safety benefits.

In many high integrity projects development costs dominate and the ability to
pick up and use a system or subsystem from another project is clearly attractive.
Indeed, if a component has a proven history of successful operation in another
application, its inclusion would seem to have safety benefits when compared to a
untried and untested new component.

When using components from other projects care must be taken to ensure that
appropriate steps are taken to make them comply with the requirements of the
current system. Full documentation of the development and verification of the
component will be required, and these should be reviewed in the light of their
changed use. Guidelines on the reuse of components are given in many of the
standards used in this area.

While component reuse offers many advantages it can be disastrous if not
performed correctly. A memorable example of what can go wrong if this is not
done properly is the Ariane V accident in 1996, which was directly attributable to
problems associated with the reuse of a system from a previous rocket.

5 Other Considerations

5.1 Commercial Off The Shelf (COTS) Components
An issue closely related to the reuse of sub-systems is the use of ‘commercial off
the shelf’ (COTS) components. This applies to both hardware and software, and in
these cost conscious times, COTS components are being increasingly used in a
wide range of industries. Programmable logic controllers (PLCs) can be regarded
as COTS components and even the five computers within the space shuttle are
standard general-purpose computers.

The use of COTS parts can have both advantages and disadvantages. Perceived
advantages are: reduced development time and cost; standardisation; increased
confidence through component reuse; and the ability to upgrade at a lower cost.
Perceived disadvantages are: a difficulty in determining the integrity level of
bought in components; limitations in the available documentation; unwanted
functionality leading to unwanted complexity; and difficulties in certification
because of a lack of basic data.

COTS is the way of the future, although this approach provides a number of
challenges, particularly in the area of certification. In some areas there are moves

towards standardisation which could ease the situation. For example in Germany
the TÜVs are now offering a certification service for PLCs.

5.2 Tools Support
The development of safety-related systems requires the use of a large number of
automated tools. Figure 11 shows various classes of tools that might be used
within a typical project. The figure differentiates between tools that are used within
a small number of phases (vertical tools) and those that are used throughout the
development lifecycle (horizontal tools).

Common user interface

Static
analysis

tools

Design
tools

Coding
tools testing

tools

Simulation
tools

Audit
tools

Requirements traceability tools

Configuration management tools

Project management tools

Documentation tools

Vertical
tools

Horizontal
tools

Dynamic

Hazard analysis tools

Figure 11 Classes of development tools

Many of the tools associated with the development process have a direct influence
on the safety of the resulting system. This is particularly true in the case of tools
for static and dynamic testing. For this reason several safety standards give
guidance on the selection of tools and the process of ‘tool certification’.

If a tool is to be used in the development of a system that is highly critical, then
the tool itself must be very dependable or faults within the tool could jeopardise
the system’s integrity. This leads to the idea of assigning a level of integrity to the
development tools as well as to the finished product. Unfortunately, there are many
problems associated with this approach, and most tool manufacturers do not claim
a particular level of integrity for their products.

The task of selecting and evaluating tools can be both time consuming and
expensive. In many cases tools must be compared on the basis of the
manufacturer’s claims rather than on first hand experience. In assessing such
claims the manufacturer’s credibility and track record must also be considered.

5.3 Formal Methods of Design
The term ‘formal methods’ describes the use of mathematical techniques in the
specification, design and analysis of computer hardware and software. These

methods can be applied to none, some or all of the development phases, and can be
applied to part or all of the system.

The design of a system can be viewed as a series of transformations of the
system’s definition. Initially the system specification describes the system, and this
is transformed into a top-level architectural representation which should have the
same functionality. This in turn is transformed in the detailed design phase, into a
form which is then implemented. If at each stage the system is described
informally (perhaps in English with equations and diagrams) then these definitions
are always open to misinterpretation. If, however, these definitions are written in a
formal specification language, their meaning is totally unambiguous and precise.
Formal methods can therefore be used to reduce ambiguity and to enhance our
understanding of the system’s operation. Also, if the system is defined formally at
each stage, it should be possible to prove the equivalence of the different
descriptions of the system and thereby verify that the transformations have been
performed correctly. If this is done across all the stages of development it allows
the designer to prove that the final design satisfies the original specification.

Unfortunately, the use of formal methods is not perhaps as simple as the last
paragraph might suggest. While the use of formal specification languages is
straightforward, the process of proving the equivalence of different stages of the
design is a very specialised task requiring a high degree of mathematical ability.
For this reason, very few projects use formal methods throughout the entire
development lifecycle. However, formal methods are widely used within certain
phases of the development process and engineers should be aware of these tools.
For an introductory overview of formal methods readers are referred to the
relevant chapter of [Storey 1996].

5.4 Managing the Design Process
Safety is not achieved simply by following an appropriate set of development
methods. It must be planned and built into a product by considering safety at all
stages. Because of its importance it is essential that a safety culture is encouraged
from the top of the organisation. A well defined safety policy is needed to establish
working practices and to ensure that these are followed.

While management structure will inevitably vary from one company to another
some well defined hierarchy must be defined to allocate safety responsibilities.
One of the key features of this structure should be the incorporation of an
appropriate level of independence between the various roles. Independent
verification of design tasks greatly increases our confidence in their correctness
and therefore enhances safety. The various standards (such as IEC 1508) give
guidance on the degree of independence that is appropriate for a range of tasks for
systems of different levels of integrity.

References
[Anderson 1990] Anderson T, and Lee P A: Fault Tolerance: Principles and Practice,

2nd edn., Springer-Verlag, New York, 1990.

[Avizienis 1985] Avizienis A: The N-version approach to fault-tolerant software,
IEEE Trans. Software Eng., 11(12), 1491-1501, 1985.

[Carré 1990] Carré B A, Jennings T J, Maclennan F J, Farrow P F and
Garnsworth J R: SPARK - The SPADE Ada Kernel, 3rd edn, Program
Validation Limited, Southampton, 1990.

[DoD 1992] Military Standardization Handbook: Reliability Prediction of
Electronic Equipment, United States Department of Defense MIL-
HDBK-217F, 1992.

[IEC 1995] Draft International Standard 1508 Functional Safety: Safety-Related
Systems, International Electrotechnical Commission, Geneva, 1995.

[Jackson 1983] Jackson M: System Design, Prentice-Hall, Englewood Cliffs, NJ,
1983.

[Leveson 1995] Leveson N G: Safeware: System Safety and Computers Addison-
Wesley, Reading, MA, 1995.

[Lewis 1996] Lewis E E: Introduction to Reliability Engineering 2nd edn., John
Wiley, New York, 1996.

[Littlewood 1993] Littlewood B and Strigini L: Validation of ultrahigh dependability
for software-based systems, Comm. ACM, 36(11), 69-80, 1993.

[MISRA 1998] Guidelines for the use of the C Language in Vehicle Based
Software, Motor Industry Software Reliability Association,
Nuneaton, UK, 1998.

[Pyle 1991] Pyle I C: Developing Safety Systems: A Guide Using Ada, Prentice-
Hall, Hemel Hempstead, UK, 1991.

[RSRE 1987] The Official Handbook of MASCOT Version 3. RSRE Computer
Division, Malvern, 1987.

[STARTS 1987] STARTS Purchasers’ Group: The STARTS Guide: Vol 1, 2nd edn.,
National Computing Centre Publications, Manchester, 1987.

[Storey 1996] Storey N: Safety-Critical Computer Systems Addison Wesley,
Harlow, UK, 1996.

[Wichmann 1993] Wichmann B A: Microprocessor design faults, Microprocessors and
Microsystems, 17(7), 399-401, 1993

[Yourdon 1979] Yourdon E and Constantine L: Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design Prentice-
Hall, Englewood Cliffs, NJ, 1979.

