
The Characteristics of Data in
Data-Intensive Safety-Related Systems

Neil Storey1 and Alastair Faulkner2

1 University of Warwick, Coventry, CV4 7AL, UK
N.Storey@warwick.ac.uk

2 CSE International Ltd., Glanford House, Bellwin Dr, Flixborough DN15 8SN, UK
agf@cse-euro.com

Abstract. An increasing number of systems now use standardised hardware
and software that is customised for a particular application using data. These
data-driven systems offer flexibility and speed of implementation, but are
dependent on the correctness of their data to ensure safe operation.

Despite the obvious importance of the data within such systems, there is
much evidence to suggest that this does not receive the same attention as other
system elements. In many cases the data is developed quite separately from the
remainder of the system, and may not benefit from the same level of hazard
analysis, verification and validation.

This paper considers the use of data in data-driven safety-related systems
and suggests that in such systems it is appropriate to consider data as a distinct
and separate component with its own development lifecycle. The paper then
considers the architectural design of data-driven systems and the problems of
validating such systems.

1 Introduction

While all computer-based systems make use of some form of data, some applications
make more extensive use of data than others. Many safety-related systems are
created by assembling standardised hardware and software components and tailoring
them for a particular application through the use of configuration data. This
approach is often adopted when using pre-existing hardware and software
components, such as COTS products, allowing similar components to be used in a
wide range of situations [1]. Data is also used to adapt custom-designed systems to a
range of similar applications – for example, to configure a control system for a
particular plant. Where large quantities of data play a major role in determining the
behaviour of a system we describe the arrangement as a ‘data-driven system’.

In many cases, much of the data used by a data-driven system is static
configuration data that is used to describe the environment in which the system is to
operate. For example, an Air Traffic Control (ATC) system is an example of a data-
driven system that uses large amounts of static data to describe the terrain within a
section of airspace, the location of airfields within it and the characteristics of the

mailto:N.Storey@warwick.ac.uk
mailto:agf@cse-euro.com

different types of aircraft. Here a standard ATC package may be tailored for use in a
number of locations simply by changing the data describing its location.

While many systems make extensive use of static configuration data, most also
depend heavily on dynamic data. For example, the ATC system mentioned above
also uses large amounts of dynamic data to describe the position and movement of
aircraft within its airspace.

It should be noted that the data within data-driven systems is not restricted to that
used by the hardware and software elements of the system. In our ongoing example of
an ATC system, data relating to aircraft movements is used not only by the automated
systems but also by the air traffic controllers. Whether the data takes the form of
information stored within a computer, or information written on a piece of paper (as
in the case of the flight strips used in ATC) the correctness of the data will affect the
safe operation of the system. Therefore, when considering data we must include not
only the information stored electronically within the system, but also the information
stored in other ways, such as within manuals, documents and the minds of the human
operators! Many semi-automated systems rely on the flexibility of operators to deal
with unusual or fault conditions. Clearly their ability to do this will be compromised
if the information supplied to them is incorrect.

While we have used a single example (an ATC system) to illustrate the role of data
within safety-related installations, data-driven systems are used in a wide range of
situations, in applications as diverse as railway control and battlefield management. It
is clear that in such applications the data plays a major role within the system, and the
correctness of this data is essential to assure overall safety. Within the literature, and
within the various standards and guidelines in this area, data is almost always
considered as an integral part of software. These documents often give useful
guidance (or requirements) for the development and testing of the executable aspects
of software, but invariably say nothing about the development of the data.
Unfortunately, data has very different characteristics from executable code and
requires different techniques. At present, little guidance is available on appropriate
development methods for data and anecdotal evidence suggests that data is often
being largely ignored during system development [2].

In data-driven systems the data often represents a major part of the system and its
generation and maintenance often represent a substantial part of the cost of the
system. For this reason, it would seem appropriate to identify data as a distinct entity
in such systems, and to consider it separately from the executable software. This
would help to ensure that data is treated appropriately in such systems and would
simplify the task of providing detailed guidance that is specific to data.

2 The Case for Considering Data Separately from Software

One reason that is often given for not considering data as a distinct entity is that it is
an integral and essential part of software. All programs make use of both static data
(in the form of constants) and dynamic data (as values within calculations) and the
programs would not function without them. These elements are indeed integral to the
software and this paper is not suggesting that such data should be considered

separately. However, some systems make use of large quantities of data that is often
developed separately from the executable software. This is particularly true when a
standard package is customised for a specific application using data. While the data
set for the first installation may well be developed in parallel with other aspects of the
system, in subsequent installations the data is usually developed quite independently.
In such cases, later versions of the data are often produced with little or no input from
the original development team [3].

Another reason for considering data to be separate from the hardware and software
elements of the system is that it has very different characteristics. One of these
differences is that the hardware and software parts of a system generally remain the
same during the life of the system (unless they are modified during maintenance or as
a result of upgrading) while the data element is normally subject to considerable
change. Data-driven systems invariably use status data that represents the time-
varying characteristics of the application and this is clearly dynamic in nature.
However, the apparently static configuration data is also subject to modification as
the plant or the environment changes. Indeed, in many cases a major reason for using
a data-driven approach is to allow the system to easily adapt to changes in its
environment. Unfortunately, the changing nature of data causes particular problems
when considering the continuing safety of a system.

Data also differs from software in other ways, such as: the way it is developed; its
functional characteristics; the fault mechanisms that affect it; and the verification and
validation methods that are required. The use of data may also represent an
alternative and distinct implementation method.

3 Selecting Implementation Strategies

When performing the top-level or architectural design of a system, engineers will
partition the required functions between system resources. Some functions may be
performed using a human operator; others may use mechanical arrangements while
others will use electrical or electronic circuits. In many cases a computer system will
provide some of the functionality and under these circumstances it is normal to
partition the requirements between the hardware and the software. However, in many
cases the use of data offers a third distinct implementation and functions may be
partitioned between hardware, software and data, as shown in Fig. 1.

 Required Functions

 Hardware Data Software

Fig. 1. Partitioning of System Functions

Non-linear function

Electronic
Hardware

Computer
Software

Data
Look-up Table

Implementation Methods

Control
Input

Control
Output

Fig. 2. Alternative implementation methods

An example of this approach is illustrated in Fig. 2, which shows part of a control
system that is required to implement some form of non-linear translation of an input
value. This function could be performed in a number of ways and the figure
illustrates three possible approaches. The first is to use some form of non-
programmable hardware, perhaps based on a non-linear curve-fitting circuit. The
second and third approaches each use a computer-based technique. The former
implements the non-linear function using a mathematical model that is executed
within software. The latter approach stores the relationship between the input and the
output within a data table. It should be noted that any computer-based approach
required computer hardware in order to operate. However, where a particular
function is achieved using a model implemented within a program, we would
normally describe this as a software implementation. Similarly, when a function is
achieved using a data table we can describe this as a data implementation even
though computer hardware and computer software are required for its execution.

The reason why it is important to distinguish between software-based and data-
based approaches is that these have different characteristics. When a designer assigns
functions to a particular component, he or she needs to consider the characteristics of
that element and how these will influence the performance and cost of the overall

system. The general characteristics of hardware and software are well understood
and many designers are very experienced at partitioning between these two resources.
However, the characteristics of data are less well understood and there is much
evidence to suggest that the implications of data use are not always considered in
sufficient detail [2].

4 A Survey of Data Development Methods

In order to investigate current development methods for data-driven systems, a series
of structured interviews were carried out, with representatives from a range of
industries. The survey produces a great deal of useful information and demonstrated,
as expected, that data is treated very differently from other system elements. Key
points raised by the survey, were:

• Data is often not subjected to any systematic hazard or risk analysis.
• Data is often not assigned any specific integrity requirements.
• Data is often poorly structured, making errors more likely and harder to detect.
• Data is often not subjected to any form of verification.

Perhaps the most striking result to come from the survey was the total lack of any
uniform approach to the development or maintenance of data. In many cases
engineers had not considered data in any detail and had no specific strategy for
dealing with the particular problems that it presents.

5 A Data Development Lifecycle

Many of the problems identified above stem from the fact that data is often ignored
during the hazard and risk analyses stage of system development. If data-related
hazards were identified at an early stage then the conventional methods of
requirements capture and requirements traceability would ensure that these hazards
were appropriately dealt with.

One way of ensuring that data is treated appropriately throughout the development
process is to consider it as a separate entity having its own development lifecycle.
This would not only ensure that the various stages of the process where applied to the
data, but would also simplify the task of specifying requirements and giving guidance
on the process of data development. International standards such as IEC 61508 [4]
give detailed guidance on many aspects of the development of software and suggest a
range of techniques that might be appropriate for each stage of the work. However,
this standard says almost nothing about the methods or tools that would be
appropriate for the production of data. The use of a separate lifecycle for the data
within a system would simplify the task of giving such guidance.

E/E/PES
architecture

E/E/PES safety
requirements
specification

Software
architecture

Software safety
requirements
specification

Software system
design

Module
design

Module
testing

Validation
testing

Coding

Integration testing
(components, subsystems

and programmable
electronics)

Validation Validated
software

Output

Verification

Integration
testing
(module)

Fig. 3. A software development lifecycle model from IEC 61508

A wide range of lifecycle models is available and engineers differ in their
preferences in this area. IEC 61508 uses a generic ‘V’ lifecycle model to describe the
development of software and this is shown in Fig. 3. The top left-hand corner of this
diagram represents the system level analysis of the system and the partitioning of the
system to form an appropriate architecture. Those aspects of the system that are
assigned to software are then developed as described in the remainder of the diagram.

It could be argued that the model of Fig. 3 could be used directly for the
production of data, or that a separate lifecycle model is unnecessary since this model
already includes both executable software and data within its various elements. While
this might be true, the model of Fig. 3 does nothing to emphasize the role of data
within the system and does not highlight any aspects that are directly related to data.
Given the identified lack of attention being given to data, it seems appropriate to take
some ‘affirmative action’ by defining a unique lifecycle for data.

In such a model, the ‘module design’ associated with software development is
replaced by ‘data structure design’ in the case of data development. This phase
represents a key element in the production of data-driven systems and is required to
format the data in such a way that it may be verified at a later stage. Many current
systems store data in a completely unstructured way making any form of verification
impossible. This phase should also consider whether any form of fault detection or
fault tolerance is necessary to achieve the required data integrity requirements.

The ‘coding’ associated with software is replaced by the process of ‘data
generation or collection’ required to populate the various data structures.

E/E/PES
architecture

E/E/PES safety
requirements
specification

Data
architecture

Data safety
requirements
specification

Data system
design

Data
structure
design

Populated
data structure

testing

Validation
testing

Data generation/collection

Integration testing
(components, subsystems

and programmable
electronics)

Validation Validated
data

Output

Verification

Integration
testing
(module)

Fig. 4. A lifecycle model for data development

A possible development lifecycle for data is shown in Fig. 4. This is based on the
software model of Fig. 3 with appropriate changes to reflect the different nature of
data. As with the development of all safety-related components, key elements of the
model are the various verification and validation activities.

6 Verification and Validation in Data-Driven Systems

Within data-driven systems we are concerned with both the verification and
validation of the data, and with the validation of the overall system.

While few standards have anything significant to say about data, one standard is
specifically concerned with this topic. This is RTCA DO 200A [5], which is
concerned with the processing of aeronautical data for use in air traffic control.
However, this standard is concerned only with the communication and manipulation
of data before it is presented to its target system. It does not look at the generation of
data or the use of appropriate data structures. This standard assumes that the data
supplied to the communication chain is already validated, and relies on ‘end-to-end’
verification of the chain to guarantee the integrity of the communication process. The
actual production of aeronautical data is covered by a companion standard RTCA DO
201A [6], but this standard is primarily concerned with data requirements (in terms of
such factors as accuracy, resolution and timeliness) and says very little about the
selection of data structures or data validation. Thus very little published information
is available on data validation and we must look elsewhere for guidance.

The difficulty of validating a system increases with the integrity requirements of
that system. IEC 61508 states target failure rates for the safety functions within
systems of different safety integrity levels (SILs) and these are shown in Table 1.

Table 1. Target failure rates for systems of different safety integrity levels from IEC 61508

SIL High demand or
continuous mode

(Probability of a dangerous
failure per hour)

Low demand
mode

(Probability of
failure on demand)

4 ≥ 10-9 to < 10-8 ≥ 10-5 to < 10-4
3 ≥ 10-8 to < 10-7 ≥ 10-4 to < 10-3
2 ≥ 10-7 to < 10-6 ≥ 10-3 to < 10-2
1 ≥ 10-6 to < 10-5 ≥ 10-2 to < 10-1

It is generally accepted that it is not possible to demonstrate that a system meets

these target failure rates by testing alone (except perhaps for low SIL systems) and so
confidence must be gained from a combination of dynamic testing, static testing and
evidence from the development process.

Over the years the various safety-related industries have gained considerable
experience in assessing the safety of software-driven systems. A wide range of static
code analysis tools are available to investigate the properties of software and
standards such as IEC 61508 give detailed guidance on which development
techniques are appropriate for systems of each SIL. Using these techniques, together
with appropriate dynamic testing, it is possible to have reasonable confidence that:
the target failure rates have been achieved; that the system has an appropriate
integrity; and that the hazards associated with the safety function have been identified
and dealt with.

The situation with regard to data-driven systems is very different. Logic would
suggest that the target failure rates for data-driven systems should be similar to those
of software-driven systems of equivalent SIL. However, few static tools are available
to investigate the correctness of data, and little guidance is available on the
development techniques appropriate for system systems. Given this situation it is
difficult to see how a system developer can reasonably demonstrate that their data-
driven system will satisfy the requirements of IEC 61508.

Another problem associated with data-driven systems relates to their dependence
on changing data. When a safety-related system is modified by making changes to its
software, it would be normal to revalidate the system to ensure that the changes have
not affected its safety. This would suggest that when using a data-driven system, the
system should be revalidated whenever changes are made to the data being used. In
practice this is impractical since some elements of the data are changing continually.
This would seem to suggest that the original validation of the system should prove
that the system is safe for any combination of data. In fact this is rarely the case and
the safety of the system is crucially dependent on the data used. This leaves us with
the problem of how we validate this data.

We noted earlier that data-driven systems use many different forms of data.
Dynamic data is often continually changing and it will never be feasible to revalidate
the system each time a value alters. Safety must be achieved either by ensuring that
the data is correct by validating it before applying it to the system, or by validating
the data in real-time within the system. In many cases a combination of these two
techniques is used. For example, an operator may be responsible for checking the
data that is input to the system, and then some form of reasonability testing will be
performed to check these entries. In such cases it is likely that the overall safety of
the system will depend on the skill of the operator and the ability of the system to
detect errors in the input data.

In many situations dynamic data is supplied to a data-driven system from another
computer network. This allows the possibility that errors in this external system, or in
the communication channel, will lead to incorrect or corrupted data being supplied.
Again, validation must be done in real-time to ensure safety.

When using dynamic data it may be possible to validate the data in real-time to
ensure that this is correct. However, a second requirement is the validation of the
overall system to ensure that it is safe for any valid combination of input data. In
large systems this may be extremely difficult given the vast size of the input domain.

The situation for static data is somewhat different. In many cases static data takes
the form of configuration data that defines the environment in which the system will
operate. Here the nature of the data dramatically changes the behaviour of the system
and different data sets will define very different systems. Under these circumstances
it will normally be impossible to design the system such that it is safe for any
combination of configuration data, and it will be necessary to validate each distinct
implementation of the system.

When a safety-related system is modified, the amount of work required to
revalidate the system depends very much on its design. A well thought-out modular
approach may allow a particular module to be redesigned and revalidated with some
confidence that the effects of these changes on the remainder of the system will be
minimal. While the complete system will need to be revalidated, it will generally not
be necessary to revalidate each of the other modules. In order for this to be true the
designer must achieve ‘isolation’ between the modules such that the operation of one
module does not interfere with the operation of another.

When designing data-driven systems we should aim to partition the configuration
data as a separate isolated module such that it may be changed without requiring all
the other modules in the system to be revalidated. If this is done successfully this will
dramatically reduce the effort needed to validate each instantiation of a data-driven
application. Under these circumstances it is likely that the first instance of a new
system will require a considerable amount of validation effort, but future
implementations will require considerably less work. However, it is essential that full
details of the design and validation of the system are available to those working on
later installations to allow them to effectively validate the system [3].

It is worth noting that despite the clear advantages of a well-structured, modular
approach to configuration data, the survey suggests that few companies adopt such a
strategy. It also suggests that validation of data is limited or sometimes non-existent.

7 Large-scale systems

As data-driven systems become larger they tend to make more extensive use of data,
and the identification and management of data integrity becomes a significant factor
in the demonstration of system integrity. Larger systems often form part of a
hierarchy of computer systems that share data. The various elements of this hierarchy
will invariably use the data in different ways, and will impose different requirements
on it. Where data-intensive systems are linked to distributed information systems, the
same data may be used by a range of machines for very different purposes. Under
these circumstances the requirements of the data (including the integrity
requirements) will vary between these machines. For example, in a railway system,
data that represents the current position of the trains is used by signaling control
systems (where its use is safety-related) and also by passenger information systems
(where it is not).

Implicit in the development or implementation of a data-driven system is a
description of the data model and the data requirements. The data model, in common
with other system components, should be developed to the same integrity as the
overall system. Unfortunately, experience and anecdotal evidence suggests that this
is not commonly the case. Development of the data model is complicated by the fact
that many control systems have peer, subordinate and supervisory systems.

Fig. 5 identifies a number of layers within a system and proposes a method of
categorising these layers based upon their nature and their role within the hierarchy of
the system [7].

Enterprise

Plant Interface

Reflex

Supervisory

Optimising

Business Unit

Plant

Fig. 5. A layered model for a hierarchy of systems

1. The ‘plant’ layer represents single instances of elements of the plant infrastructure,
the physical equipment;

2. The ‘plant interface’ layer represents the interface to the plant infrastructure
elements. This layer converts information from sensors (including feedback from
actuators) into abstract representations such as electrical signals or data, and also
produces signals to drive the various actuators;

3. The ‘reflex’ layer is the lowest layer at which the measured status is interpreted
and control (or protection) actions are carried out. These actions may be based
upon information (which may include stored information), any demands upon the
system and some set of rules. In this reflex layer the rules and information
completely determine the control action. In principle all activities in the reflex
layer can be automated. Where a protection system does not require the
intervention of an operator these protection systems are described as reflex actions.
These reflex actions are in essence rule based. Safety-critical functions often
require a fast response and therefore often make use of reflex actions;

4. The ‘supervisory’ layer represents a more complex level of control. This
complexity may be a result of large-scale operation, integrating a number of
dissimilar functions, or of interpreting complex or ambiguous data (or of some
combination of these). The distinction between the reflex and supervisory layers is
the judgement or knowledge that must be applied, particularly in degraded or
emergency situations. Supervisory systems are characterised by the need to
support the judgement of the operator doing the supervision. Predominantly the
supervisory layer is downward looking, viewing the performance of the lower
levels;

5. The ‘optimisation’ layer represents the most sophisticated control layer. At its
most developed the optimisation layer should maximise the use of resources for
the delivery of the service. The optimisation layer should respect the performance
and safety constraints of the underlying system. The information demands on the
optimisation layer are high, requiring a full understanding of the underlying
system, the planned service and contingency plans. The full understanding of the
underlying system includes the performance capabilities and constraints of the
various layers of the system;

6. The ‘business unit’ layer represents the divisional responsibility of the delivery of
service by the organisation. This layer normally plays little part in the real-time
operation of the operational parts of the system, being more concerned with the
medium term maintenance (including competencies) and development of the
infrastructure, and the subsequent future delivery of the planned service. The
business unit will become involved in the short-term operation of the system in
response to a serious incident that causes substantial impact on the delivery of the
service; and

7. The ‘enterprise’ layer represents the corporate entity; responsible for the planning
and execution of large-scale changes to the infrastructure; responding to changes
in legislation; setting and maintaining standards, procedures and competency
requirements.

In this work the authors propose that the supervisory layer should be the highest
layer at which a safety function should be implemented. This boundary is depicted in
Fig. 5 by the box surrounding the plant, plant interface, reflex and supervisory layers.
The optimisation layer should take into account knowledge of current and possible
future operational conditions. These operational conditions may be restrictions on the
use of the plant due to planned or unplanned maintenance. Optimisation is therefore
required to respect the performance and safety constraints of the system. Clearly,
optimisation should only employ safe functions; that is, the optimisation of the
execution of the planned service should not be capable of compromising the safety of
the system.

The implementation of large-scale control systems requires a framework in which
to express the role played by respective system components and provide a mechanism
by which large-scale system safety may be argued. The layered model may be used
to represent an organisation where several systems are used in the provision of a
single function or service. This is illustrated in Fig. 6, which represents the coupling
between the constituent components of an organisation.

Enterprise

Plant
Interface

Reflex

Supervisory

Optimising

Business Unit

Plant

Plant
Interface

Plant
Interface

Reflex

Plant

Plant
Interface

Plant
Interface

Reflex

Optimising

Business Unit

Plant

Plant
Interface

Plant
Interface

Reflex

Supervisory

Plant

Plant
Interface

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 6. An organisation employing a hierarchy of systems

The functional decomposition or partitioning of a design may be described in terms of
its ‘coupling’.

In this paper coupling is taken to be the degree of interdependence between
elements of the design. A common design goal should be to minimise coupling. Low
coupling, between well-designed modules, reduces the overall design complexity,
creating products that lend themselves to analysis.

In a systems context, coupling is not restricted to the elements of a single design.
The system will interact with its environment and quite possibly with other
instantiations of the same or similar systems, or with subordinate and supervisory
systems. Therefore the concept of coupling should be extended to consider vertical
coupling between the system and subordinate and supervisory systems, and horizontal
coupling between other instantiation of the same or similar peers systems.

Within this paper we are primarily concerned with coupling related to the
exchange of data either through a shared (static) description of the infrastructure, or
through dynamic data passed across the system boundary. In Fig. 6 vertical coupling
is identified by the numbered triangles, and horizontal coupling is shown by the
numbered stars.

A system possessing low coupling should not only possess the desirable design
properties of resilience and stability, but should also have the characteristic that
changes to one component should have limited effects on other components. The
benefits of these properties are self evident for both good software and good systems
design, and are described in many texts. However anecdotal evidence suggests that
the same cannot be said of the data used by data-intensive systems. While data
differs in many respects from hardware and software, it is likely that broad parallels
may be drawn in terms of the desirable properties of good data design.

8 Discussion and Conclusions

Growing commercial pressures to use standardised hardware and software are leading
to an increased use of data-driven systems. These are often complex in comparison
with conventional computer-based systems and very often form part of a hierarchy of
computers. This complexity makes data-driven systems challenging to design. There
are also indications that the data at the heart of these systems is not receiving the
attention it deserves. For this reason this paper suggests that data should be identified
as a separate component within a data-driven system. This would highlight the
importance of data to the correct operation of the system, and would simplify the
process of giving guidance in this area.

An informal survey of engineers working in this area suggests that data is often
largely ignored within the development process. Data is often not subjected to hazard
analysis and is not assigned a specific integrity level. Perhaps for these reasons, data
is often poorly structured and is not subjected to any form of verification.

Given finite economic resources, all data cannot be treated equally and other more
realistic strategies are required. One such strategy would be to develop data integrity
requirements that allow the targeting of development resources by a classification of
risk, based upon failures due to data errors or data faults. This pragmatic approach
develops the position advocated by standards such as IEC 61508 for hardware and
software.

The key to successful data management lies in the use of well-designed data
structures that permit and ease verification. Good design practice requires the design
of components which have low coupling. Such components are usually modular,
with interfaces that are resilient to changes in design. Isolation of data modules is
also important since this can dramatically reduce the effort required for system
validation.

References

1. McDermid, J.A.: The cost of COTS. IEE Colloquium - COTS and Safety critical systems
London (1998)

2. Storey, N., Faulkner, A.: The Role of Data in Safety-Related Systems, Proc. 19th
International System Safety Conference, Huntsville (2001)

3. Storey, N., Faulkner, A.: Data Management in Data-Driven Safety-Related Systems, Proc.
20th International System Safety Conference, Denver (2002)

4. IEC: 61508 Functional Safety of electrical / electronic / programmable electronic safety-
related systems, International Electrotechnical Commission, Geneva (1998)

5. RTCA: DO 200A Standards for Processing Aeronautical Data, Radio Technical
Commission for Aeronautics, Washington (1998)

6. RTCA: DO 201A Standards for Aeronautical Information, Radio Technical Commission for
Aeronautics, Washington (2000)

7. Faulkner, A.: Safer Data: The use of data in the context of a railway control system”, Proc.
10th Safety-critical Systems Symposium, pp 217-230 ISBN: 1-85233-561-0, Southampton,
UK (2002)

