

The Role of Data in Safety-Related Systems

Neil Storey, B.Sc., Ph.D., FBCS, MIEE, CEng; School of Engineering,

University of Warwick; Coventry, CV4 7AL, UK

Alastair Faulkner, M.Sc., MBCS, CEng; CSE International Ltd.; Glanford House,
Bellwin Drive, Flixborough DN15 8SN, UK

Keywords: data, safety-related systems, software, safety

Abstract

When considering the production of a computer-
based system, it is common to partition the
arrangement into hardware and software
elements. The software part of such an
arrangement is taken to include both the
instructions that are executed by the processor,
and the data that is used and produced by these
instructions. In some cases, a large amount of
data forms an essential element within the
system and plays a vital role in ensuring its
correct operation. In such situations it is perhaps
more appropriate to partition a system into
hardware, software and data, to allow
appropriate importance to be given to each
element. This is particularly appropriate in
safety-related applications where the safe
operation of the system is dependent upon the
correctness of the data. Unfortunately, the
various standards and guidelines that relate to the
production of critical systems are concerned
almost exclusively with methods of ensuring the
‘safety’ of the hardware and the executable
portions of the software of a system, and say
almost nothing about the nature, production or
testing of the data.

This paper looks at the nature of data in a range
of safety-critical applications. It then considers
the characteristics of data faults and proposes a
systematic approach to tackling them.

Introduction

The safety of a complex, safety-related system is
a property of the complete system, rather than of
individual components. Therefore when
designing such systems, attention must be paid to
all its elements and aspects.

Over the years a large number of standards and
guidelines have evolved to assist engineers in
this task. Most industries that are actively
involved in the production of safety-related

systems have devised guidelines or standards
that describe the hazards associated with the
mechanisms or components normally used
within that industry. There are also generic
standards, such IEC 61508 (ref. 1) that provide
guidance across a range of industrial sectors.

Within the various standards and guidelines there
is much useful information on methods of
identifying and tackling hazards associated with
the failure of mechanical, electrical and
electronic components. The literature also
contains guidance on the treatment of hazards
associated with humans within critical systems.
However, the largest volume of material in this
area is concerned with the identification and
treatment of hazards associated with software.
Many standards are concerned exclusively with
software aspects, for example references 2, 3, 4
and 5, which are concerned respectively with:
civil aviation; military systems; nuclear power
stations; and railway signalling. The generic
standard IEC 61508 covers systems implemented
using a wide range of technologies, but again, a
large part of its guidance is concerned with
software development issues.

Software development receives so much
attention within the various standards because
this is widely seen as the area that represents the
greatest challenge when attempting to produce a
dependable and safe system. In computer-based
systems much of the complexity resides within
the software, and it is therefore not surprising
that this is where the problems also lie.
However, systems vary tremendously in the form
of the software they contain.

One way in which systems vary is in the volume
and nature of the data used by the software. Data
has quite different characteristics from the
executable elements of software, and it is the
view of the authors of this paper that the various
standards pay insufficient attention to this aspect
of the development of safety-related systems.

The Role of Data

All computer programmes make use of some
form of data. Most programmes will contain a
set of constants that is used within its operation,
and will calculate other values as the program is
executed. Temporary, or intermediate values,
may be stored in specific memory locations or on
a stack. All these quantities can be thought of as
data, which can be either constant or variable.

While all programmes will make use of some
form of data, some make much more extensive
use of data, which can take various forms. For
example:

� Calibration constants
� Device characteristics
� Plant configuration data
� Terrain or topological data

These forms of data are each used to adapt a
perhaps standard piece of software to a specific
instance, situation or plant. With the widespread
use of COTS software we are seeing an
increasing number of such applications.

A characteristic shared by each of these classes
of data is that they are normally generated quite
separately from the development of the
'executable' section of the software. For this
reason they may be outside of the normal process
of verification applied to the software. However,
the task of generating such data may be a
complex and demanding one. If one considers,
for example, the data used to describe the layout
of a railway network, or the terrain surrounding
an airport, is clear that the work involved, and
the scope for errors, are considerable.

The examples given above represent just a few
of the many situations where data plays a major
role in determining the safety of a system. In
many cases the data forms a significant, distinct,
component, that is often generated quite
separately from the executable parts of the
software. In such circumstances there would
seem to be great advantages in considering the
data as a separate entity, with its own
development requirements and lifecycle.

To see how this can be done we need to consider
how the creation of data fits within the overall
development process, and to identify the
particular problems associated with it.

Risk-based Development Methods

Safety-related industries have devised a range of
development methods to help ensure the safety
of computer-based systems. These development
methods invariably adopt a risk-based approach,
which begins by identifying the hazards
associated with a proposed system, and then
moves on to ensure that the risks associated with
these hazards are kept to an acceptable level.

The early stages of hazard analysis are concerned
with identifying the major hazards associated
with the application itself, irrespective of the
way in which it is implemented. This analysis
gives an indication of the inherent hazards
involved, and will give an early indication of the
required safety integrity level (SIL) of the
system. The SIL plays a large part in
determining the development methods that will
be adopted and therefore the overall cost of the
project.

The hazards identified, together with the SIL,
will greatly influence the overall architecture of
the system, and will help to select the methods
that will be used to implement the functions of
the system. Since safety is determined by the
characteristics of the complete system, rather
than by individual elements, hazard and risk
analyses must be applied to all elements within
the system, be they mechanical components,
electronic hardware, computer software, or even
the human elements of the system.
Unfortunately, these system elements have very
different characteristics and tend to introduce
hazards in different ways.

One aspect of the analysis of hazards is
concerned with the effects of failures of the
various components in the system. This is of
particular importance in the case of hardware
elements, which are subject to random failure.
Perhaps a more demanding aspect of hazard
analysis attempts to investigate the effect of
systematic errors in the system - possibly as a
result of design errors. Such considerations will
clearly affect the detailed design of individual
modules, but may also play a part in determining
the overall implementation methods used.

In a particular system it may be possible to
implement a given function in a range of
different ways, perhaps using very different
techniques or even different technologies. This
is illustrated in Figure 1, which looks at a range
of ways of implementing the same function.

Figure 1 - Some Alternative Implementation Methods

Implementation Methods

Figure 1 illustrates several alternative methods of
implementing a simple non-linear function.

The first method shown uses a human operator to
produce the non-linear behaviour, using learned
skills or a set of defined rules. The second
method uses some form of non-linear mechanical
arrangement. The diagram suggests a solution
based on levers, but alternative methods might
use cams, or some form of pneumatic or
hydraulic arrangement. In many situations an
electronic system is preferred, which could
involve simple non-programmable hardware (as
in the third example), or perhaps a computer-
based system. Where a computer is used to
implement the non-linear function, this could be
achieved in a number of ways. Perhaps the most
obvious approaches are that the function could
be implemented using a mathematical model

executed within the software (as in example 4),
or that the function is stored in a data table
representing the relationship between particular
input and output values (as in the last example).

An important point to note is that several of
these implementation methods combine a range
of components or elements. For example, the
human operator may well require electronic or
mechanical components in order to perform the
required task. Similarly, any implementation
using a computer will require hardware, software
and data in order to function. However, when
describing the implementation we would
normally use a term that indicates the basic
approach taken to produce the required
functionality. In the examples in Figure 1 we
would therefore describe the various
implementation methods as being: human-based,
mechanically based, hardware-based, software-
based and data-based.

Non-linear function

Human Mechanical Electronic
Hardware

Computer
Software

Data
Look-up Table

Implementation Methods

In order to make an appropriate choice between a
range of implementation methods, we need to
understand the characteristics of each approach.
In safety-related applications, one of the key
considerations will be the susceptibility of the
approach to different kinds of fault.

System Faults

IEC 61508 defines a fault as an "abnormal
condition that may cause a reduction in, or loss
of, the capability of a functional unit to perform
a required function". Faults may be divided into
systematic and random faults, and the nature of
the faults will depend on the form of the
elements concerned. Table 1 gives examples of
possible causes of faults that can effect elements
implemented in a range of ways.

From the table it is clear that all forms of
implementation are susceptible to specification
errors. This is because the specification forms
the starting point of any design, and so errors in
this document will affect any form of system in a
similar way. Other sources of systematic faults
will depend on the techniques being used. In a
human-based system these could relate to
tendencies within operators to make particular
kinds of mistake, or an inability of users to
respond to a particular set of circumstances in
the time available. Such faults are systematic
since they will occur each time that the
appropriate set of circumstances exists.
Systematic faults in hardware-based or
computer-based implementations might relate to
design errors, or to systematic manufacturing
problems. Data within computer-based systems
will clearly suffer from specification errors as

with other forms of system. Logic would
suggest that data would also suffer from other
forms of systematic error depending on the
methods used to create it. In some cases data is
produced manually and would therefore be
subject to human error. In other cases it might
be produced automatically, leaving it susceptible
to the forms of systematic error associated with
the techniques used to produce it.

The nature of random faults also varies from one
form of system to another. Some forms of human
errors are effectively random, in that they cannot
be predicted and will not necessarily re-appear in
similar circumstances. Mechanical and electronic
hardware also exhibit random faults, in the form
of random component failures. Software and
data however, are more complex issues.

Accepted doctrine on this topic, as reflected in
IEC 61508, suggests that all software faults are
systematic. This is based on the fact that a fault
within a program will be experienced predictably
each time the program is executed. This line of
argument would suggest that measures such as
reliability and 'mean time to failure', cannot be
applied to software.

Despite the so-called 'predictability' of software
failures, often our experience of such things is
quite different. When using personal computers
for example, we will often experience a software
failure when performing a task we have
successfully performed before. Such failures
often give the appearance of being random.
This has led some engineers to suggest that some
forms of software fault can be subjected to
statistical analysis (for example, see reference 6).

Table 1 - Examples of the Causes of Random and Systematic Faults

Implementation Method Systematic Faults Random Faults

Human Specification errors; systematic human
errors due to misunderstanding or lack of
ability or skill.

Random human errors

Mechanical Specification errors; design errors or
systematic manufacturing errors.

Random component failures

Electronic Hardware Specification errors; design errors or
systematic manufacturing errors.

Random component failures

Computer Software Specification errors; software design
errors or coding errors.

 ?

Data Specification errors, data design errors or
systematic collection/generation errors.

 ?

Engineers who subscribe to this view argue that
the complex process involved in generating
software means that faults can be randomly
distributed throughout the code. The location or
effects of these faults can not be predicted, and
they therefore give the appearance of being
random. This suggests that unknown software
faults can be subjected to statistical analysis.
However, once a fault has been identified it can
no longer be treated in this way. This view,
while not universally held, does have
considerable support from many engineers
working in this area, and has led to work on
techniques to predict the reliability of software
(for examples, see reference 7). Since, for most
purposes such faults behave as if they were
random, for the remainder of this paper we will
refer to them as random faults, remembering
however, that this randomness is illusory.

If one accepts that the executable portion of
software is susceptible to both systematic faults
and faults that give the appearance of being
random, then the same reasoning would seem to
suggest that data is also susceptible to such
faults. This would suggest that unknown data
faults may also give the appearance of being
random, and may also be subjected to statistical
analysis. Again, in this paper we will refer to
such faults as random data faults, always
remembering the limitations of this notation.

Since data is susceptible to faults, it follows that
it should be subjected to hazard and risk
analysis. However, experience shows that this is
often not the case. Certainly, the various
standards say almost nothing about the
application of such techniques to data, and
anecdotal evidence from industry suggests that
this area is often completely ignored.

Tackling Faults in High Integrity Systems

Much of the process of developing dependable
systems is related to dealing with faults - a
process of 'fault management'. In non-critical
systems good design and the use of quality
components can often produce acceptable
performance. However, in systems requiring a
high integrity additional measures must be taken
to overcome the effects of faults. Broadly these
may be divided into four groups of techniques:

� Fault avoidance
� Fault removal
� Fault detection
� Fault tolerance.

Fault avoidance aims to prevent faults from
entering the system during the design stage, and
is a goal of the entire development process.
Fault removal attempts to find and remove faults
before a system enters service. Fault detection
techniques are used to detect faults during
operation so that their effects may be minimised.
Fault tolerance aims to allow a system to operate
correctly in the presence of faults.

From the discussion above it is clear that data is
subject to three primary forms of faults, namely:

� Errors in the specification of the system
� Systematic faults in data production
� Random faults in data production.

Before considering ways of tackling these
various forms of fault, it is perhaps useful to see
how faults are dealt with in other system
elements. Tables 2 to 5 give examples of fault
management techniques used in other areas of
system development.

Table 2 - Faults associated with Humans and Examples of Fault Management Techniques

Fault examples

Systematic

Faults due to specification errors;
misunderstandings or lack of ability

Random

Random human mistakes.

Fault avoidance methods Operator training: e.g. driving lessons. Ergonomic design techniques.

Fault removal methods Operator training and testing, e.g. use of flight simulators.

Fault detection methods Operator monitoring systems, e.g. dead-man's handle. Input or command
screening techniques, e.g. syntax or spell checking.

Fault tolerant techniques Operator redundancy, e.g. use of two pilots in a civil aircraft. Limitations of
operator's scope of action, e.g. aircraft envelope protection, automotive ABS
and traction control.

Table 3 - Faults associated with Mechanical Elements and Examples of Fault Management Techniques

Fault examples

Systematic

Faults due to specification errors;
design errors, systematic
manufacturing errors, etc.

Random

Random component failure.

Fault avoidance methods Conservative design methods, use of design rules, modelling techniques. Use
of reliability engineering to predict susceptibility to random failures.

Fault removal methods Use of prototypes for destructive testing, fatigue testing, performance testing
and estimation of failure rate. Environmental simulation testing.

Fault detection methods System monitoring systems, e.g. automotive temperature sensors, vibration
sensors, oil pressure gauges.

Fault tolerant techniques Static or dynamic redundancy e.g. duplicated mechanical components,
standby generators and automotive spare tyres.

Table 4 - Faults associated with Electronic Hardware and Examples of Fault Management Techniques

Fault examples

Systematic

Faults due to specification errors;
design errors, systematic
manufacturing errors, etc.

Random

Random component failure.

Fault avoidance methods Formal design methods, use of design rules, modelling techniques. Use of
reliability engineering to predict susceptibility to random failures.

Fault removal methods Dynamic testing using prototypes, such as destructive testing, fatigue testing,
performance testing and estimation of failure rate. Static testing such as
formal verification and design reviews. Design and environmental simulation.

Fault detection methods Hardware monitoring systems, functionality checking, consistency checking,
signal comparison, checking pairs, instruction monitoring, loopback testing or
watchdog timers.

Fault tolerant techniques Static, dynamic or hybrid redundancy, e.g. triple modular redundancy
(TMR), N-modular redundancy (NMR) or standby-spares.

Table 5 - Faults associated with Software and Examples of Fault Management Techniques

Fault examples

Systematic

Faults due to specification errors;
software design or coding errors;
compiler or other tool errors.

Random

Unknown, random programming
mistakes.

Fault avoidance methods Animation of the specification. Rigorous or formal design methods. Use of
appropriate software design languages such as Ada.

Fault removal methods Dynamic testing using prototypes, such as functional and performance testing.
Static testing using static code analysis tools, formal verification or design
reviews. Design or environmental simulation.

Fault detection methods Software monitoring systems, range checking and reasonability checking.

Fault tolerant techniques Diverse redundancy using as N-version programming or recovery blocks.

Tackling Data Faults

Before progressing in our discussion of methods
of tackling data faults we need to be clear about
our meaning of this term.

The corruption of a byte within a ROM, or the
corruption of information being sent between
two computers, would not normally be
considered as a software fault, but as a failure of
the hardware concerned. Similarly, in this paper
the term data fault is taken to mean a fault within
the data developed for use by a system, and does
not include any corruption of that data by the
system itself.

In setting out to tackle the problems associated
with data faults we get very little assistance from
the literature, or from the various standards in
this area. For example IEC 61508 says almost
nothing of the problems associated with data, or
how to address them. This omission would seem
to reflect the general situation within industries
working on safety-related systems, since a
number of confidential interviews, performed as
part of the work described in this paper, suggest
that data faults are often largely ignored within
the development of critical systems. The results
of these interviews suggest that:

� Data is often not subjected to any

systematic hazard or risk analysis.
� Data is often poorly structured, making

errors more likely to be produced and
harder to detect.

� Data is often not subjected to any form
of verification.

Given the absence of any accepted practice in
this area, it seems sensible to look at the

techniques used to tackle faults of other types (as
listed in Tables 2 - 5) to see if these suggest
methods of tackling data faults. In fact, looking
at the various tables it is clear that very similar
methods are used to tackle a wide range of faults.
For example, static or dynamic redundancy can
be used to tolerate faults in many
implementations. In computer hardware this
might take the form of triplicated modules with
some form of voting (static) or a standby-spare
arrangement (dynamic). In software this might
be implemented using N-version programming
(static) or by recovery blocks (dynamic). In a
mechanical system this could be represented by
operating several motors together (static) or
having a standby motor (dynamic). In a human-
based arrangement this could take the form of
having several operators working together and
checking each other (static) or some form of
fault detection and a standby operator (dynamic).
Given these examples it seems appropriate to
suggest that static and/or dynamic redundancy
might also be an appropriate method of tackling
data faults. Applying similar logic, it seems
likely that appropriate methods of fault
avoidance, fault removal and fault detection
could also be used to increase the dependability
of data. Table 6 suggests an approach to data
fault management based on techniques used in
other areas.

Note that when data is stored or transmitted it
may be appropriate to make use of information
redundancy such as checksums, parity bits or
error correcting codes, to increase confidence in
the correctness of the data. These measures are
not included in Table 6 since they are effectively
coping with hardware (or software) errors in the
storage or transmission of the data, not with
errors in the generation of the data itself.

Table 6 - Faults associated with Data and Examples of Fault Management Techniques

Fault examples

Systematic

Faults due to specification errors,
data design errors or systematic
collection/generation errors.

Random

Unknown, random data
collection/generation errors.

Fault avoidance methods Animation of the specification. Rigorous or formal design methods. Use of
automated and verifiable methods of data collection/generation.

Fault removal methods Appropriate static and dynamic testing techniques, modelling and simulation.

Fault detection methods Data monitoring systems, range checking and reasonability checking.

Fault tolerant techniques Diverse redundancy using static or dynamic techniques.

Data Fault Management

It would not be appropriate in this paper to
describe in detail the methods that should be
used for each stage of the development of a
safety-related system. This is partly because the
appropriate methods depend on the nature of the
system being developed, and partly because such
a treatment would suggest a consensus on such
matters that does not currently exist. However, it
is possible to look at the methods of fault
management used for other system elements and
to make a few observations.

Perhaps the most important observation is that
the structuring of the data is very important.
When creating safety-related software we would
normally avoid using thousands of lines of
unstructured assembly code, because such
coding is error prone and because such
programmes are very difficult to verify.
However, this approach is directly analogous to
the completely unstructured techniques used to
manage data in many safety-related systems.
Data should be structured to facilitate
verification, and to permit fault removal and
fault detection techniques to be used.

In systems requiring a high safety integrity level,
it might be appropriate to include fault tolerance
in the form of data redundancy. As with software
redundancy this would require diversity, since
simply copying a data structure gives no
protection against any form of systematic fault.
Such diversity could take the form of N-version
data (equivalent to N-version programming)
using equivalent, but independently developed
data structures. As with its software equivalent,
the disadvantage of this approach is its very high
development cost, and for this reason it is likely
that such techniques would be reserved for only
highly critical applications.

One of the problems facing the developers of
safety-related systems relates to development
tools. IEC 61508 gives a considerable amount of
guidance on the selection of tools and techniques
for the development of software for safety-
related systems, but no similar guidance exists
for data development tools. It is possible that
this omission reflects an absence of dedicated
tools in the area. Of great importance in the
development of high integrity software is the
availability of a range of static code analysis
tools to help in the process of fault removal.
Perhaps what is needed is a corresponding set of

static data analysis tools to perform a similar
function when developing data structures.

We noted earlier that data-driven systems often
take the form of a 'standardised' system that is
configured for a particular application by the use
of configuration data. This can lead to a
situation where the common elements of the
system are developed and verified using
systematic, well-structured techniques, while the
configuration data is produced in an unstructured
and uncontrolled manner at some later stage.
Logic would suggest that any data that is
relevant to the correct operation of a safety-
critical system should be considered as part of
the overall system and developed accordingly.

Recommendations

To tackle the problems outlined above, this paper
makes a series of recommendations:

� The architectural design of a safety-related

system should clearly identify the data
elements within the system, distinct from the
hardware and software components.

� The data within the system should have its

own development lifecycle, with appropriate
stages of hazard analysis, design and
verification.

� The data should be described by an

appropriate data model that is self-sufficient,
clear, analysable and unambiguous.

� The data model, and its populated data set,

should be developed, verified, documented
and maintained, using techniques appropriate
to the Safety Integrity Level (SIL) of the
system concerned.

� The tools and techniques used in the creation

of data for safety-related systems should be
appropriate to the SIL of the system
concerned. This might require tool
manufacturers to development new tools,
specifically for this purpose.

� Data that is derived from external sources, or

that is developed separately from the safety-
related system itself, should be subject to the
same requirements of verification and
documentation, as data produced as an
integral part of the project.

Discussion

Standards such as IEC 61508 have been
developed over many years with input from
hundreds of engineers from around the world. It
is therefore unrealistic to imagine that the
suggestions given in this paper can in any way
represent a definitive treatment of this matter.
Rather, this paper sets out to publicise the need
for further work in this area, and hopefully, to
promote future revisions of standards like IEC
61508 to include this very important area.

While current standards say little specifically
about the development of data, their coverage of
design and development methodologies does
provide useful guidance on techniques that might
be appropriate to the production of data.
However, effective use of this guidance relies on
the identification of data as a distinct entity to
which such methodologies should be applied.

In an industrial environment, commercial
pressures often encourage engineers to perform
the minimum amount of work necessary to
demonstrate adherence to a given standard. In
such situations, the identification of a major new
system element, requiring its own development
lifecycle, may not be attractive. It is therefore
possible that the development of data will not be
treated appropriately until this forms part of the
various standards.

Conclusion

The widespread use of COTS is leading to an
increasing number of systems where standard
hardware and software are configured for a
particular application (or instance of an
application) by the use of custom data.

This paper makes the case for considering data
as a separate and distinct entity within a
computer-based, safety-related system. It also
discusses the effects of faults within this data,
and argues that these may be systematic or
apparently random in nature.

Although the various standards give little
guidance on the creation or management of data,
the paper argues that many of the techniques
used in the development of other system
elements may be directly applicable. However,
engineers working on the production of safety-
related systems need clear and authoritative
guidance on these issues.

References

1. IEC 61508 Functional Safety of electrical /
electronic / programmable electronic safety-
related systems Geneva: International
Electrotechnical Commission, 1998.

2. RTCA DO 178B / EUROCAE ED-12B
Software Considerations in Airborne Systems
and Equipment Certification Washington: Radio
Technical Commission for Aeronautics, Paris:
European Organisation for Civil Aviation
Electronics, 1992.

3. Interim Defence Standard 00-55 The
Procurement of Safety Critical Software in
Defence Equipment. Glasgow: Directorate of
Standardisation, 1991.

4. International Standard 880 Software for
Computers in the Safety Systems of Nuclear
Power Stations. Geneva: International
Electrotechnical Commission, 1986.

5. RIA Safety Related Software for Railway
Signalling (Consultative Document) London:
Railway Industry Association, 1991.

6. Littlewood B, Forecasting software
reliability, in Software Reliability, Modelling
and Identification, Lecture Notes in Computer
Science 341 (Ed. Bittanti S), 141-209, London:
Springer-Verlag, 1988.

7. Lyu M. R., (ed), The Handbook of Software
Reliability Engineering New York: McGraw
Hill, 1996.

Biography

N. Storey, B.Sc., Ph.D., FBCS, MIEE, C.Eng.
School of Engineering, University of Warwick,
Coventry, CV4 7AL, UK. Telephone - +44 24
7652 3247, facsimile - +44 24 7641 8922, e-mail
- N.Storey@warwick.ac.uk.

Neil Storey is a Director within the School of
Engineering of the University of Warwick. His
primary research interests are in the area of
safety-critical computer systems. He is a member
of the BCS Taskforce on Safety-Critical Systems
and has a large number of publications including
both journal and conference papers. Neil is also
the author of several textbooks on electronics
and safety, including “Safety Critical Computer
Systems” published by Addison-Wesley.

Alastair Faulkner, MSc., MBCS, C.Eng; CSE
International Ltd., Glanford House, Bellwin
Drive, Flixborough DN15 8SN, UK. Telephone
+44 1724 862169, facsimile +44 1724 846256
email - agf@cse-euro.com

Alastair Faulkner holds an MSc degree in
Computer Science from Salford University and
is a Chartered Engineer. His background is in
software development mainly concerned with
computer based command and control systems.
He now works on a large UK Rail infrastructure
project. Alastair’s research interests are in the
data management of data-driven safety-related
systems. He is also a Research Engineer with
the University of Warwick and is studying for an
Engineering Doctorate.

Paper Release Form
19th International System Safety Conference

Title of Paper: The Role of Data in Safety-Related Systems

I hereby authorize the System Safety Society to publish the paper listed above in the Proceedings of the
18th International System Safety Conference. Further, I agree to the following policy and notice regarding
copyrights.

It is the policy of the System Safety Society, the sponsor of the International System Safety
Conference, not to copyright the proceedings in order to provide the widest access for academic and
educational use. Authors are free to copyright their papers as long as they agree with this policy. The
policy to be contained in the proceedings is as follows:

Permission to print or copy: The copyright of all materials and commentaries published in these
proceedings rests with the authors. Reprinting or copying for academic or educational use is
encouraged and no fees are required; however, such permission is contingent upon giving full and
appropriate credit to the author and the source of publication.

Author: Neil Storey

Address: School of Engineering

University of Warwick
Coventry
CV4 7AL
UK

Work Phone: +44 24 7652 3247

Home Phone: +44 24 7641 5517

FAX: +44 24 7641 8922

E-Mail: N.Storey@warwick.ac.uk

Signature Date

Mail to: John Livingston
 Boeing Reusable Space Systems
 555 Discovery Drive
 Mail Code ZA-12
 Huntsville, AL 35806-2809
 (256) 971-3005, fax (256) 971-2699
 john.m.livingston@boeing.com

Author: Alastair Faulkner

Address: CSE International Ltd

Glandford House
Bellwin Drive
Flixborough
DN15 8SN
UK

Work Phone: +44 1724 862169

Home Phone: +44 161 338 2682

FAX: +44 1724 846256

E-Mail: agf@cse-euro.com

Signature Date

