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Abstract 

 
When considering the production of a computer-
based system, it is common to partition the 
arrangement into hardware and software 
elements.  The software part of such an 
arrangement is taken to include both the 
instructions that are executed by the processor, 
and the data that is used and produced by these 
instructions.  In some cases, a large amount of 
data forms an essential element within the 
system and plays a vital role in ensuring its 
correct operation. In such situations it is perhaps 
more appropriate to partition a system into 
hardware, software and data, to allow 
appropriate importance to be given to each 
element.  This is particularly appropriate in 
safety-related applications where the safe 
operation of the system is dependent upon the 
correctness of the data.  Unfortunately, the 
various standards and guidelines that relate to the 
production of critical systems are concerned 
almost exclusively with methods of ensuring the 
‘safety’ of the hardware and the executable 
portions of the software of a system, and say 
almost nothing about the nature, production or 
testing of the data. 
 
This paper looks at the nature of data in a range 
of safety-critical applications.  It then considers 
the characteristics of data faults and proposes a 
systematic approach to tackling them. 
 

Introduction 
 

The safety of a complex, safety-related system is 
a property of the complete system, rather than of 
individual components.  Therefore when 
designing such systems, attention must be paid to 
all its elements and aspects.  
 
Over the years a large number of standards and 
guidelines have evolved to assist engineers in 
this task.  Most industries that are actively 
involved in the production of safety-related 

systems have devised guidelines or standards 
that describe the hazards associated with the 
mechanisms or components normally used 
within that industry.  There are also generic 
standards, such IEC 61508 (ref. 1) that provide 
guidance across a range of industrial sectors. 
 
Within the various standards and guidelines there 
is much useful information on methods of 
identifying and tackling hazards associated with 
the failure of mechanical, electrical and 
electronic components.  The literature also 
contains guidance on the treatment of hazards 
associated with humans within critical systems.  
However, the largest volume of material in this 
area is concerned with the identification and 
treatment of hazards associated with software.  
Many standards are concerned exclusively with 
software aspects, for example references 2, 3, 4 
and 5, which are concerned respectively with: 
civil aviation; military systems; nuclear power 
stations; and railway signalling.  The generic 
standard IEC 61508 covers systems implemented 
using a wide range of technologies, but again, a 
large part of its guidance is concerned with 
software development issues. 
 
Software development receives so much 
attention within the various standards because 
this is widely seen as the area that represents the 
greatest challenge when attempting to produce a 
dependable and safe system.  In computer-based 
systems much of the complexity resides within 
the software, and it is therefore not surprising 
that this is where the problems also lie.  
However, systems vary tremendously in the form 
of the software they contain. 
 
One way in which systems vary is in the volume 
and nature of the data used by the software.  Data 
has quite different characteristics from the 
executable elements of software, and it is the 
view of the authors of this paper that the various 
standards pay insufficient attention to this aspect 
of the development of safety-related systems. 



The Role of Data 
 
All computer programmes make use of some 
form of data.  Most programmes will contain a 
set of constants that is used within its operation, 
and will calculate other values as the program is 
executed.  Temporary, or intermediate values, 
may be stored in specific memory locations or on 
a stack.  All these quantities can be thought of as 
data, which can be either constant or variable. 
 
While all programmes will make use of some 
form of data, some make much more extensive 
use of data, which can take various forms.  For 
example: 
 

� Calibration constants 
� Device characteristics 
� Plant configuration data 
� Terrain or topological data 

 
These forms of data are each used to adapt a 
perhaps standard piece of software to a specific 
instance, situation or plant.  With the widespread 
use of COTS software we are seeing an 
increasing number of such applications. 
 
A characteristic shared by each of these classes 
of data is that they are normally generated quite 
separately from the development of the 
'executable' section of the software.  For this 
reason they may be outside of the normal process 
of verification applied to the software.  However, 
the task of generating such data may be a 
complex and demanding one.  If one considers, 
for example, the data used to describe the layout 
of a railway network, or the terrain surrounding 
an airport, is clear that the work involved, and 
the scope for errors, are considerable. 
 
The examples given above represent just a few 
of the many situations where data plays a major 
role in determining the safety of a system.  In 
many cases the data forms a significant, distinct, 
component, that is often generated quite 
separately from the executable parts of the 
software.  In such circumstances there would 
seem to be great advantages in considering the 
data as a separate entity, with its own 
development requirements and lifecycle.  
 
To see how this can be done we need to consider 
how the creation of data fits within the overall 
development process, and to identify the 
particular problems associated with it. 

Risk-based Development Methods 
 
Safety-related industries have devised a range of 
development methods to help ensure the safety 
of computer-based systems.  These development 
methods invariably adopt a risk-based approach, 
which begins by identifying the hazards 
associated with a proposed system, and then 
moves on to ensure that the risks associated with 
these hazards are kept to an acceptable level. 
 
The early stages of hazard analysis are concerned 
with identifying the major hazards associated 
with the application itself, irrespective of the 
way in which it is implemented.  This analysis 
gives an indication of the inherent hazards 
involved, and will give an early indication of the 
required safety integrity level (SIL) of the 
system.  The SIL plays a large part in 
determining the development methods that will 
be adopted and therefore the overall cost of the 
project. 
 
The hazards identified, together with the SIL, 
will greatly influence the overall architecture of 
the system, and will help to select the methods 
that will be used to implement the functions of 
the system.  Since safety is determined by the 
characteristics of the complete system, rather 
than by individual elements, hazard and risk 
analyses must be applied to all elements within 
the system, be they mechanical components, 
electronic hardware, computer software, or even 
the human elements of the system.  
Unfortunately, these system elements have very 
different characteristics and tend to introduce 
hazards in different ways.  

One aspect of the analysis of hazards is 
concerned with the effects of failures of the 
various components in the system.  This is of 
particular importance in the case of hardware 
elements, which are subject to random failure.  
Perhaps a more demanding aspect of hazard 
analysis attempts to investigate the effect of 
systematic errors in the system - possibly as a 
result of design errors.  Such considerations will 
clearly affect the detailed design of individual 
modules, but may also play a part in determining 
the overall implementation methods used. 

In a particular system it may be possible to 
implement a given function in a range of 
different ways, perhaps using very different 
techniques or even different technologies.  This 
is illustrated in Figure 1, which looks at a range 
of ways of implementing the same function. 



 
 

Figure 1 - Some Alternative Implementation Methods 
 

Implementation Methods 
 
Figure 1 illustrates several alternative methods of 
implementing a simple non-linear function. 
 
The first method shown uses a human operator to 
produce the non-linear behaviour, using learned 
skills or a set of defined rules.  The second 
method uses some form of non-linear mechanical 
arrangement.  The diagram suggests a solution 
based on levers, but alternative methods might 
use cams, or some form of pneumatic or 
hydraulic arrangement.  In many situations an 
electronic system is preferred, which could 
involve simple non-programmable hardware (as 
in the third example), or perhaps a computer-
based system.  Where a computer is used to 
implement the non-linear function, this could be 
achieved in a number of ways.  Perhaps the most 
obvious approaches are that the function could 
be implemented using a mathematical model 

executed within the software (as in example 4), 
or that the function is stored in a data table 
representing the relationship between particular 
input and output values (as in the last example). 
 
An important point to note is that several of 
these implementation methods combine a range 
of components or elements.  For example, the 
human operator may well require electronic or 
mechanical components in order to perform the 
required task.  Similarly, any implementation 
using a computer will require hardware, software 
and data in order to function.  However, when 
describing the implementation we would 
normally use a term that indicates the basic 
approach taken to produce the required 
functionality.  In the examples in Figure 1 we 
would therefore describe the various 
implementation methods as being: human-based, 
mechanically based, hardware-based, software-
based and data-based.  

Non-linear function 

Human Mechanical Electronic 
Hardware 

Computer 
Software 

Data 
Look-up Table 

Implementation Methods 



In order to make an appropriate choice between a 
range of implementation methods, we need to 
understand the characteristics of each approach.  
In safety-related applications, one of the key 
considerations will be the susceptibility of the 
approach to different kinds of fault.  
 

System Faults 
 
IEC 61508 defines a fault as an "abnormal 
condition that may cause a reduction in, or loss 
of, the capability of a functional unit to perform 
a required function".  Faults may be divided into 
systematic and random faults, and the nature of 
the faults will depend on the form of the 
elements concerned. Table 1 gives examples of 
possible causes of faults that can effect elements 
implemented in a range of ways. 
 
From the table it is clear that all forms of 
implementation are susceptible to specification 
errors.  This is because the specification forms 
the starting point of any design, and so errors in 
this document will affect any form of system in a 
similar way.  Other sources of systematic faults 
will depend on the techniques being used.  In a 
human-based system these could relate to 
tendencies within operators to make particular 
kinds of mistake, or an inability of users to 
respond to a particular set of circumstances in 
the time available.  Such faults are systematic 
since they will occur each time that the 
appropriate set of circumstances exists.  
Systematic faults in hardware-based or 
computer-based implementations might relate to 
design errors, or to systematic manufacturing 
problems.  Data within computer-based systems 
will clearly suffer from specification errors as 

with other forms of system.  Logic would 
suggest that data would also suffer from other 
forms of systematic error depending on the 
methods used to create it.  In some cases data is 
produced manually and would therefore be 
subject to human error.  In other cases it might 
be produced automatically, leaving it susceptible 
to the forms of systematic error associated with 
the techniques used to produce it. 
 
The nature of random faults also varies from one 
form of system to another. Some forms of human 
errors are effectively random, in that they cannot 
be predicted and will not necessarily re-appear in 
similar circumstances. Mechanical and electronic 
hardware also exhibit random faults, in the form 
of random component failures.  Software and 
data however, are more complex issues. 
 
Accepted doctrine on this topic, as reflected in 
IEC 61508, suggests that all software faults are 
systematic.   This is based on the fact that a fault 
within a program will be experienced predictably 
each time the program is executed.  This line of 
argument would suggest that measures such as 
reliability and 'mean time to failure', cannot be 
applied to software.  
 
Despite the so-called 'predictability' of software 
failures, often our experience of such things is 
quite different.  When using personal computers 
for example, we will often experience a software 
failure when performing a task we have 
successfully performed before.  Such failures 
often give the appearance of being random.  
This has led some engineers to suggest that some 
forms of software fault can be subjected to 
statistical analysis (for example, see reference 6). 

Table 1 - Examples of the Causes of Random and Systematic Faults 

Implementation Method Systematic Faults Random Faults 

Human Specification errors; systematic human 
errors due to misunderstanding or lack of 
ability or skill. 

Random human errors 

Mechanical Specification errors; design errors or 
systematic manufacturing errors. 

Random component failures 

Electronic Hardware Specification errors; design errors or 
systematic manufacturing errors. 

Random component failures 

Computer Software Specification errors; software design 
errors or coding errors. 

                 ? 

Data Specification errors, data design errors or 
systematic collection/generation errors. 

                 ? 



Engineers who subscribe to this view argue that 
the complex process involved in generating 
software means that faults can be randomly 
distributed throughout the code.  The location or 
effects of these faults can not be predicted, and 
they therefore give the appearance of being 
random.  This suggests that unknown software 
faults can be subjected to statistical analysis.  
However, once a fault has been identified it can 
no longer be treated in this way.  This view, 
while not universally held, does have 
considerable support from many engineers 
working in this area, and has led to work on 
techniques to predict the reliability of software 
(for examples, see reference 7).  Since, for most 
purposes such faults behave as if they were 
random, for the remainder of this paper we will 
refer to them as random faults, remembering 
however, that this randomness is illusory. 
 
If one accepts that the executable portion of 
software is susceptible to both systematic faults 
and faults that give the appearance of being 
random, then the same reasoning would seem to 
suggest that data is also susceptible to such 
faults.  This would suggest that unknown data 
faults may also give the appearance of being 
random, and may also be subjected to statistical 
analysis.  Again, in this paper we will refer to 
such faults as random data faults, always 
remembering the limitations of this notation. 
 
Since data is susceptible to faults, it follows that 
it should be subjected to hazard and risk 
analysis.  However, experience shows that this is 
often not the case.  Certainly, the various 
standards say almost nothing about the 
application of such techniques to data, and 
anecdotal evidence from industry suggests that 
this area is often completely ignored. 

Tackling Faults in High Integrity Systems 
 
Much of the process of developing dependable 
systems is related to dealing with faults - a 
process of 'fault management'.  In non-critical 
systems good design and the use of quality 
components can often produce acceptable 
performance.  However, in systems requiring a 
high integrity additional measures must be taken 
to overcome the effects of faults.  Broadly these 
may be divided into four groups of techniques: 

� Fault avoidance 
� Fault removal 
� Fault detection 
� Fault tolerance. 

Fault avoidance aims to prevent faults from 
entering the system during the design stage, and 
is a goal of the entire development process.  
Fault removal attempts to find and remove faults 
before a system enters service.  Fault detection 
techniques are used to detect faults during 
operation so that their effects may be minimised.  
Fault tolerance aims to allow a system to operate 
correctly in the presence of faults. 
 
From the discussion above it is clear that data is 
subject to three primary forms of faults, namely: 

� Errors in the specification of the system 
� Systematic faults in data production 
� Random faults in data production. 

Before considering ways of tackling these 
various forms of fault, it is perhaps useful to see 
how faults are dealt with in other system 
elements.  Tables 2 to 5 give examples of fault 
management techniques used in other areas of 
system development. 

 
Table 2 - Faults associated with Humans and Examples of Fault Management Techniques 

 

Fault examples 

Systematic 

Faults due to specification errors; 
misunderstandings or lack of ability 

Random 

Random human mistakes. 

Fault avoidance methods Operator training: e.g. driving lessons.  Ergonomic design techniques. 

Fault removal methods Operator training and testing, e.g. use of flight simulators. 

Fault detection methods Operator monitoring systems, e.g. dead-man's handle.  Input or command 
screening techniques, e.g. syntax or spell checking.  

Fault tolerant techniques Operator redundancy, e.g. use of two pilots in a civil aircraft.  Limitations of 
operator's scope of action, e.g. aircraft envelope protection, automotive ABS 
and traction control. 



Table 3 - Faults associated with Mechanical Elements and Examples of Fault Management Techniques 

 

Fault examples 

Systematic 

Faults due to specification errors; 
design errors, systematic 
manufacturing errors, etc. 

Random 

Random component failure. 

Fault avoidance methods Conservative design methods, use of design rules, modelling techniques.  Use 
of reliability engineering to predict susceptibility to random failures. 

Fault removal methods Use of prototypes for destructive testing, fatigue testing, performance testing 
and estimation of failure rate.  Environmental simulation testing. 

Fault detection methods System monitoring systems, e.g. automotive temperature sensors, vibration 
sensors, oil pressure gauges.  

Fault tolerant techniques Static or dynamic redundancy e.g. duplicated mechanical components, 
standby generators and automotive spare tyres. 

 

Table 4 - Faults associated with Electronic Hardware and Examples of Fault Management Techniques 

 

Fault examples 

Systematic 

Faults due to specification errors; 
design errors, systematic 
manufacturing errors, etc. 

Random 

Random component failure. 

Fault avoidance methods Formal design methods, use of design rules, modelling techniques.  Use of 
reliability engineering to predict susceptibility to random failures. 

Fault removal methods Dynamic testing using prototypes, such as destructive testing, fatigue testing, 
performance testing and estimation of failure rate.  Static testing such as 
formal verification and design reviews. Design and environmental simulation. 

Fault detection methods Hardware monitoring systems, functionality checking, consistency checking, 
signal comparison, checking pairs, instruction monitoring, loopback testing or 
watchdog timers. 

Fault tolerant techniques Static, dynamic or hybrid redundancy, e.g. triple modular redundancy  
(TMR), N-modular redundancy (NMR) or standby-spares.  

 
Table 5 - Faults associated with Software and Examples of Fault Management Techniques 

 

Fault examples 

Systematic 

Faults due to specification errors; 
software design or coding errors; 
compiler or other tool errors. 

Random 

Unknown, random programming 
mistakes. 

Fault avoidance methods Animation of the specification. Rigorous or formal design methods. Use of 
appropriate software design languages such as Ada. 

Fault removal methods Dynamic testing using prototypes, such as functional and performance testing. 
Static testing using static code analysis tools, formal verification or design 
reviews. Design or environmental simulation. 

Fault detection methods Software monitoring systems, range checking and reasonability checking.  

Fault tolerant techniques Diverse redundancy using as N-version programming or recovery blocks. 
 



Tackling Data Faults 
 
Before progressing in our discussion of methods 
of tackling data faults we need to be clear about 
our meaning of this term.  
 
The corruption of a byte within a ROM, or the 
corruption of information being sent between 
two computers, would not normally be 
considered as a software fault, but as a failure of 
the hardware concerned.  Similarly, in this paper 
the term data fault is taken to mean a fault within 
the data developed for use by a system, and does 
not include any corruption of that data by the 
system itself. 
 
In setting out to tackle the problems associated 
with data faults we get very little assistance from 
the literature, or from the various standards in 
this area.  For example IEC 61508 says almost 
nothing of the problems associated with data, or 
how to address them.  This omission would seem 
to reflect the general situation within industries 
working on safety-related systems, since a 
number of confidential interviews, performed as 
part of the work described in this paper, suggest 
that data faults are often largely ignored within 
the development of critical systems.  The results 
of these interviews suggest that: 
 
� Data is often not subjected to any 

systematic hazard or risk analysis. 
� Data is often poorly structured, making 

errors more likely to be produced and 
harder to detect.  

� Data is often not subjected to any form 
of verification. 

 
Given the absence of any accepted practice in 
this area, it seems sensible to look at the 

techniques used to tackle faults of other types (as 
listed in Tables 2 - 5) to see if these suggest 
methods of tackling data faults.  In fact, looking 
at the various tables it is clear that very similar 
methods are used to tackle a wide range of faults.  
For example, static or dynamic redundancy can 
be used to tolerate faults in many 
implementations.  In computer hardware this 
might take the form of triplicated modules with 
some form of voting (static) or a standby-spare 
arrangement (dynamic).  In software this might 
be implemented using N-version programming 
(static) or by recovery blocks (dynamic).  In a 
mechanical system this could be represented by 
operating several motors together (static) or 
having a standby motor (dynamic).  In a human-
based arrangement this could take the form of 
having several operators working together and 
checking each other (static) or some form of 
fault detection and a standby operator (dynamic).  
Given these examples it seems appropriate to 
suggest that static and/or dynamic redundancy 
might also be an appropriate method of tackling 
data faults.  Applying similar logic, it seems 
likely that appropriate methods of fault 
avoidance, fault removal and fault detection 
could also be used to increase the dependability 
of data. Table 6 suggests an approach to data 
fault management based on techniques used in 
other areas. 
 
Note that when data is stored or transmitted it 
may be appropriate to make use of information 
redundancy such as checksums, parity bits or 
error correcting codes, to increase confidence in 
the correctness of the data.  These measures are 
not included in Table 6 since they are effectively 
coping with hardware (or software) errors in the 
storage or transmission of the data, not with 
errors in the generation of the data itself. 

 
Table 6 - Faults associated with Data and Examples of Fault Management Techniques 

 

Fault examples 

Systematic 

Faults due to specification errors,  
data design errors or systematic 
collection/generation errors. 

Random 

Unknown, random data 
collection/generation errors. 

Fault avoidance methods Animation of the specification. Rigorous or formal design methods.  Use of 
automated and verifiable methods of data collection/generation. 

Fault removal methods Appropriate static and dynamic testing techniques, modelling and simulation. 

Fault detection methods Data monitoring systems, range checking and reasonability checking.  

Fault tolerant techniques Diverse redundancy using static or dynamic techniques. 



Data Fault Management 
 
It would not be appropriate in this paper to 
describe in detail the methods that should be 
used for each stage of the development of a 
safety-related system.  This is partly because the 
appropriate methods depend on the nature of the 
system being developed, and partly because such 
a treatment would suggest a consensus on such 
matters that does not currently exist.  However, it 
is possible to look at the methods of fault 
management used for other system elements and 
to make a few observations. 
 
Perhaps the most important observation is that 
the structuring of the data is very important.  
When creating safety-related software we would 
normally avoid using thousands of lines of 
unstructured assembly code, because such 
coding is error prone and because such 
programmes are very difficult to verify.  
However, this approach is directly analogous to 
the completely unstructured techniques used to 
manage data in many safety-related systems.  
Data should be structured to facilitate 
verification, and to permit fault removal and 
fault detection techniques to be used.  
 
In systems requiring a high safety integrity level, 
it might be appropriate to include fault tolerance 
in the form of data redundancy. As with software 
redundancy this would require diversity, since 
simply copying a data structure gives no 
protection against any form of systematic fault. 
Such diversity could take the form of N-version 
data (equivalent to N-version programming) 
using equivalent, but independently developed 
data structures.  As with its software equivalent, 
the disadvantage of this approach is its very high 
development cost, and for this reason it is likely 
that such techniques would be reserved for only 
highly critical applications. 
 
One of the problems facing the developers of 
safety-related systems relates to development 
tools. IEC 61508 gives a considerable amount of 
guidance on the selection of tools and techniques 
for the development of software for safety-
related systems, but no similar guidance exists 
for data development tools.  It is possible that 
this omission reflects an absence of dedicated 
tools in the area.  Of great importance in the 
development of high integrity software is the 
availability of a range of static code analysis 
tools to help in the process of fault removal.  
Perhaps what is needed is a corresponding set of 

static data analysis tools to perform a similar 
function when developing data structures. 
 
We noted earlier that data-driven systems often 
take the form of a 'standardised' system that is 
configured for a particular application by the use 
of configuration data.  This can lead to a 
situation where the common elements of the 
system are developed and verified using 
systematic, well-structured techniques, while the 
configuration data is produced in an unstructured 
and uncontrolled manner at some later stage. 
Logic would suggest that any data that is 
relevant to the correct operation of a safety-
critical system should be considered as part of 
the overall system and developed accordingly. 
 

Recommendations 
 
To tackle the problems outlined above, this paper 
makes a series of recommendations: 
 
� The architectural design of a safety-related 

system should clearly identify the data 
elements within the system, distinct from the 
hardware and software components. 

 
� The data within the system should have its 

own development lifecycle, with appropriate 
stages of hazard analysis, design and 
verification. 

 
� The data should be described by an 

appropriate data model that is self-sufficient, 
clear, analysable and unambiguous. 

 
� The data model, and its populated data set, 

should be developed, verified, documented 
and maintained, using techniques appropriate 
to the Safety Integrity Level (SIL) of the 
system concerned. 

 
� The tools and techniques used in the creation 

of data for safety-related systems should be 
appropriate to the SIL of the system 
concerned.  This might require tool 
manufacturers to development new tools, 
specifically for this purpose. 

 
� Data that is derived from external sources, or 

that is developed separately from the safety-
related system itself, should be subject to the 
same requirements of verification and 
documentation, as data produced as an 
integral part of the project. 



Discussion 
 

Standards such as IEC 61508 have been 
developed over many years with input from 
hundreds of engineers from around the world.  It 
is therefore unrealistic to imagine that the 
suggestions given in this paper can in any way 
represent a definitive treatment of this matter.  
Rather, this paper sets out to publicise the need 
for further work in this area, and hopefully, to 
promote future revisions of standards like IEC 
61508 to include this very important area. 
 
While current standards say little specifically 
about the development of data, their coverage of 
design and development methodologies does 
provide useful guidance on techniques that might 
be appropriate to the production of data.  
However, effective use of this guidance relies on 
the identification of data as a distinct entity to 
which such methodologies should be applied. 
 
In an industrial environment, commercial 
pressures often encourage engineers to perform 
the minimum amount of work necessary to 
demonstrate adherence to a given standard.  In 
such situations, the identification of a major new 
system element, requiring its own development 
lifecycle, may not be attractive.  It is therefore 
possible that the development of data will not be 
treated appropriately until this forms part of the 
various standards.  
 

Conclusion 
 
The widespread use of COTS is leading to an 
increasing number of systems where standard 
hardware and software are configured for a 
particular application (or instance of an 
application) by the use of custom data.  
 
This paper makes the case for considering data 
as a separate and distinct entity within a 
computer-based, safety-related system.  It also 
discusses the effects of faults within this data, 
and argues that these may be systematic or 
apparently random in nature. 
 
Although the various standards give little 
guidance on the creation or management of data, 
the paper argues that many of the techniques 
used in the development of other system 
elements may be directly applicable.  However, 
engineers working on the production of safety-
related systems need clear and authoritative 
guidance on these issues. 
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