
10 Journal of System Safety, Q4 2003

by Neil Storey, Coventry, U.K.,
and Alastair Faulkner, Flixborough, U.K.

Data — The Forgotten System Component?

“…anecdotal evidence
suggests that data does

not receive the same
attention as other system

elements…”

The increasing use of COTS
components is leading to the
production of a large number
of systems that use standard-
ized hardware and software
customized for a particular
situation by the use of data.
Where such systems are used
in safety-related applications,
the safety of
the resulting
system will
often be
dependent on
the correct-
ness of this
data. It is
therefore
essential that this data compo-
nent is developed and tested
to the same level of rigor as
other system elements.

Despite the obvious im-
portance of data correctness in
safety-related systems, anec-
dotal evidence suggests that
data does not receive the same
attention as other system
elements. This view is rein-
forced by the observation that
the standards in this area say
almost nothing about the
design, production, verifica-
tion or maintenance of data.

This article describes a
study to investigate the tech-
niques being used to produce
and manage data in a range of
safety-related industries.

Introduction
Over the last decade, we have
seen an increasing reliance on
computers in all forms of
safety-related system. Because
of the high development costs
associated with such systems,
developers have moved to-
ward the use of standardized
hardware and software, wher-
ever possible. This, in turn, has
led to the large-scale use of
COTS products, and to the

development of systems that
can be easily adapted to a
range of similar situations
[Ref. 1]. Often these systems
are not only data-driven but
also data-intensive. In such
cases, a large and significant
component of each project is
data, which may represent a

substantial
part of the
complexity
and the cost
of the com-
plete system.

Since
safety is a
property of a

complete system, rather than
its individual components, it
follows that attention must be
paid to all its components
during the development pro-
cess. Over the years, a great
many techniques have been
developed for treating the
hardware and software ele-
ments of computer systems,
but less attention has been
directed at the data element.
This is evident from the vari-
ous standards and guidelines
relating to safety-related sys-
tems. Generic standards, such
as IEC 61508 [Ref. 2], provide
extensive guidance on hard-
ware and software issues, and
are used across a range of
industrial sectors. However,
these say almost nothing
about the generation, testing
or control of data. Similarly,
industry-specific standards in
the civil aircraft, military,
nuclear and railway sectors
[Refs. 3-6] give little guidance
in this area.

Perhaps one of the rea-
sons is that these documents
make the tacit assumption
that data is simply part of
software and is therefore cov-
ered by the general guidance

given. Certainly, many defini-
tions of software include data
(and documentation) within
its remit. However, it is quite
clear that in many cases the
data component is not devel-
oped alongside more conven-
tional software, and is not
developed with the same
degree of care.

To see how and why data
is treated differently from
software, we need to look at
the nature of data within
computer-based systems. Here
we are primarily interested in
systems that make use of large
amounts of data. We will refer
to such systems as data-driven
systems.

Data in Data-Driven
Systems
All computer programs make
use of data in one form or
another. Most programs will
contain constants that are
used within their operation,
and will calculate values as
they are executed. Temporary,
or intermediate, values may be
stored in specific memory
locations or on a stack. Many
systems also make use of
calibration constants or device
characteristics for particular
elements. All these can be
thought of as either constant
or variable data that forms an
integral part of the software.

This article is not con-
cerned with data that forms
an integral part of the soft-
ware. Here we are concerned
with the use of large quanti-
ties of data by a safety-related
system. This data might, for
example, describe the chang-
ing environment in which a
system is to operate, or per-
haps be used to configure a
system for a particular appli-
cation. Such data is often

generated quite independently
from the “executable” software.

In many data-driven sys-
tems, some form of applica-
tion software implements a
series of required functions
that are then applied to a set
of data. The application soft-
ware may be a COTS pro-
gram, or some custom or
semi-custom software. The
data on which it acts often
represents some aspect of the
physical world. For example,
the application data could be
a railway control system, and
in this case the data would
represent (among other
things) the physical layout of
the tracks and the instanta-
neous positions of the trains.
In this example, the data is
used to configure the system
for this particular situation.
The same suite of software
applications could be used
with different data to control
a different railway network in
another location. Other ex-
amples of data-driven systems
include those used in Air
Traffic Control (ATC). Here,
commercial ATC packages are
configured to work within a
particular air space by the use
of data. This data will include
a fixed description of the area
(including an altitude map of
the region and the location of
airfields, etc.) and transient
data on the positions of air-
craft in the region at any time.

In these examples, and in
many data-driven systems, the
application software is often
developed and supplied to-
gether with the hardware of
the system. This software may
well be a standard product
that has been developed and
refined over a number of
years. However, the configura-
tion data is invariably a unique

References for this article are found on page 36.

Journal of System Safety, Q4 2003 11

set of data that is developed
quite independently.

Data Development
While the configuration data
is often developed separately
from the application software,
it is clearly an essential part of
the complete system. Conse-
quently, the correctness of this
data will normally be closely
linked to overall system safety.
This being the case, it is likely
that the safety integrity re-
quirements of the configura-
tion software will be compa-
rable to those of the applica-
tion software.

In any safety-related ap-
plication, the development
methods used must reflect the
safety integrity level (SIL) of
the system. If the SIL of the
configuration data is the same
as that of the application
software, then one would
expect that each would be
developed and verified with a
similar amount of care and
rigor. However, there is much
anecdotal evidence to suggest
that this is not the case.

A possible reason why
data might be treated differ-
ently from software is that
very little guidance is available
on appropriate data develop-
ment methods. Within most
standards and guidelines, data
is considered to be an integral
part of software. However,
while these documents give a
great deal of attention to the
executable aspects of software,
they give little attention to the
special requirements of data.

As an example, if we look
at IEC 61508, we find that a
complete section of the stan-
dard relates to software. The
section contains a subclause
entitled “General Require-
ments,” which sets out a range
of requirements for the soft-
ware of the system. This sec-
tion ends with the statement,
“This subclause … shall, in so
far as it is appropriate, apply
to data including any data
generation languages.” This

statement perhaps sums up the
treatment of data within the
standard. Data is seen as an
integral part of the software,
having few special characteris-
tics or special requirements.

It would be unfair to
suggest that IEC 61508 says
nothing about the require-
ments of data. For example, it
says at one point that “…the
design method chosen shall
possess features that facilitate
… the expression of … data
structures and their proper-
ties.” However, the standard
says nothing of the methods
that should be used to gener-
ate or verify data, and it does
not identify specific data re-
quirements.

A Data Development
Life Cycle
The authors of this article
would argue that since data in
data-driven systems is often
developed separately from
other parts of the system, it
should be treated separately
and have its own require-
ments documents and its own
development life cycle. A
reasonable starting point in
the development of such a
model might be the software
development life cycle given
within IEC 61508 and shown
in Figure 1. This is largely the
standard “V-model” life cycle,
with which most engineers
will be familiar. For those not
acquainted with this standard,
the acronym E/E/PES stands
for electrical/electronic/pro-
grammable electronic system.
One could argue that a sepa-
rate life cycle for data is un-
necessary since it is already
covered by the existing soft-
ware life cycle. A powerful
argument for this point of
view would be if it could be
shown that data was currently
being developed in line with
the life cycle of Figure 1. This
would suggest that further
guidance or regulation was
unnecessary. However, if it
could be seen that data was

E/E/PES Safety
Requirements
Specification

Software Safety
Requirements
Specification

Validation
Testing

E/E/PES
Architecture

Software
Architecture

Integration Testing
(components, subsystems

and programmable
electronics)

Software
System Design

Module
Design

Coding

Integration
Testing

(module)

Module
Testing

Validation Validated
Software

Output

Verification

currently being ignored, it
would seem to strengthen the
authors’ claim that a separate
life cycle model would have
benefits.

A Survey of Data
Development Methods
In order to investigate current
development methods for
data, a series of structured
interviews was carried out,
with representatives from a
range of industries. The inter-
views were confidential, to
allow for frank descriptions of
the company’s operation. The
industries/sectors involved
were:

• Railway command and
control systems

• High-integrity railway
interlocking

• Underground railway
systems

• Process control systems
• Air traffic control systems
• Urban road traffic signal-

ling systems
• Electrical engineering

systems
• Safety regulator systems

In all cases, the people
questioned were senior engi-
neers with many years of
experience within their indus-

try. They were therefore able
to give an authoritative view
on the development methods
being used within their orga-
nizations.

Results from the Interviews
The survey produced a great
deal of information on the
development of data-driven
systems, and demonstrated, as
expected, that these are often
developed differently from
more conventional safety-
related systems. One of the
strongest (and perhaps most
significant) points raised by
the survey is that hazard
analysis is often not applied to
data in the same way that it is
applied to other system ele-
ments. This means that the
possible failure modes are not
identified, and the conse-
quences of such failures are
not studied.

Similarly, it is common
not to apply integrity require-
ments to data. This omission
masks the need to demon-
strate that data has been de-
veloped to an appropriate
level of quality.

The survey also suggests
that the development process
changes significantly with
time. When a data-driven
system is applied for the first

Figure 1 — Software Safety Integrity and the Development Life Cycle,
from IEC 61508.

12 Journal of System Safety, Q4 2003

or second time, the developers
tend to be involved in this
process and to contribute
directly to the work involved.
The developers are therefore
able to give guidance on the
implementation methods
used, and on the intent behind
its construction. In a sense,
these early applications form
part of the final validation of
the system, confirming that it
satisfies its requirements in an
actual application.

Provided
that these
early imple-
mentations
are successful,
the develop-
er’s involve-
ment in the
installation
process will
normally
cease. Later applications will
not have the benefit of the
input from those who created
the system and will need to
rely on documentation and an
understanding of the
developer’s intent. As the
system is more widely applied,
its ability to be tailored to a
given situation may result in
its being used in circum-
stances that were not envis-
aged by the original design
team.

It could be argued that
each new application of a
general-purpose, data-driven
system is a unique system, and
that each should be indepen-
dently verified and validated
in full to ensure that it is safe
and that it satisfies its require-
ments. However, in practice
this is not done. Justification
of the system is normally
based on the assumption that
the configuration data repre-
sents an essentially indepen-
dent module within the sys-
tem. Since the remainder of
the system has been validated
in another situation, it is as-
sumed that changing the data
only requires that the data be
separately validated.

Unfortunately, while it
would be possible to design a
system to allow the data to be
seen as a separate module that
could be validated indepen-
dently, the survey shows that
this is often not the case.
Many applications rely on
data that appears to have no
modular structure and that is
used in a very poorly defined
manner. Under these circum-
stances, small changes to the
data can have significant and

unpredictable
effects on the
system. In
such cases,
even minor
changes to the
data would
seem to re-
quire that the
entire system
be retested

and validated — not just the
modified data.

Another problem is that
the data associated with many
systems is not in a form that
allows it to be validated sepa-
rately from the complete
system. The survey shows that
data often does not have de-
fined requirements, structure
or function that would allow
it to be validated as a separate
entity. In such situations, it can
only be investigated as part of
the complete system. In these
circumstances, one can only
determine the safety of a
unique set of data by investi-
gating (validating) the com-
plete system.

An interesting finding of
the survey is that data-driven
systems would seem to be
more likely to be used in
situations where they interact
with other data systems. They
therefore tend to contain data
interfaces to other systems
within an organization. Data
passing through these inter-
faces poses its own unique
problems for system integrity
and safety. One only has to
think of examples such as
railway signalling or air traffic

control to see how safety is
reliant on the quality and
timeliness of such data.

A final observation is that
data-driven systems tend to be
larger in scale than other sys-
tems, increasing the need for
effective configuration man-
agement.

Conclusions from the
Survey
The findings of the survey
suggest that data within data-
driven systems is often not
being developed in the same
way as application software. It
also suggests that in many
cases the data is not being
developed and managed in a
way that would satisfy the
requirements outlined in IEC
61508, or other standards, for
the development of software.

Perhaps the most worry-
ing finding is that hazard
analysis is often not applied to
configuration data in the same
way that it is applied to other
system elements. This inevita-
bly leads to a situation where
data faults are not identified as
significant system hazards.

A failure to identify data-
related hazards means that
these are not covered by the
safety requirements of the
system. This, in turn, means that
the system architecture, and
system design, will not attempt
to deal with these hazards. If
one does not identify data faults
as a significant hazard, then no
effort will be put into avoiding,
removing, detecting or tolerat-
ing such faults.

Also of concern is the fact
that, in many cases, no integ-
rity requirements are being
applied to data. This seems to
imply that data faults are seen
as unimportant. When an
integrity classification is ap-
plied to a system element
(such as hardware or soft-
ware), this brings with it an
expectation that faults within
those elements will be dealt
with in a manner appropriate
to that integrity level. For

example, IEC 61508 has tar-
get failure rates for each of the
safety integrity levels. A failure
to assign integrity require-
ments to data ignores the
obvious importance of this
system element.

Another major finding of
the survey relates to the verifi-
cation and validation of sys-
tems that have been config-
ured for a particular situation
through the use of data. In
such situations, it is not nor-
mal to fully validate the con-
figured system, but to rely
heavily on confidence gained
by validating the system with-
out the data, or with a differ-
ent data set. This approach
would seem to assume that
either the data is a completely
separate module that can be
investigated separately, or that
the safety of the system is not
affected by the data. Both of
these assumptions would
seem to be invalid.

In many cases, companies
take great care in the produc-
tion of configuration data, but
the techniques used tend to
be selected in an unsystematic
manner. This may be because
little guidance is available
within the literature to aid this
choice.

Tackling the Problems
of Data
It is clear that the manage-
ment of data in data-driven,
safety-related systems is not
always receiving the attention
that it should. For this reason,
the authors suggest that more
specific guidance is required
for this system element. We
propose that data should be
specifically identified as a
system element within stan-
dards such as IEC 61508, and
that explicit and unambiguous
guidance should be given on
appropriate methods for its
specification, design, imple-
mentation, verification and
validation.

One way of encouraging
engineers to look specifically

“Perhaps the most worrying
finding is that hazard analysis
is often not applied to configu-
ration data in the same way

that it is applied to other
system elements.”

Journal of System Safety, Q4 2003 13

at the management of data is
to assign to it a dedicated
development life cycle model.
Figure 2 shows a possible life
cycle, based on the software
development life cycle of IEC
61508.

The life cycle of Figure 2
does not show hazard and risk
analyses as a separate phase,
since these tasks are carried
out throughout the develop-
ment process. However, the
identification of a “data safety
requirements specification”
will require that hazard and
risk analyses be carried out at
an early stage in the develop-
ment process. The data safety
requirements will provide an
input into the planning of the
overall data architecture and
may require such features as
data fault tolerance.

A key recommendation is
that the integrity require-
ments of the data should be
specified explicitly. This will
place a requirement on the
developer to demonstrate that
the data has been developed
in a manner consistent with
the specified data integrity
level. It will also require that
the developer show that data
faults have been considered
and dealt with appropriately.

More detailed aspects of
the design will include consid-

eration of the data structures
to be used. Here the form of
the life cycle model encour-
ages engineers to consider the
need for verification of the
populated structures at a later
time. Experience shows that
many existing systems use
poorly structured data that
makes verification impossible.
Such techniques would not be
tolerated in the production of
executable software, and
should not be acceptable
within data management.

The generation or collec-
tion of data is clearly an im-
portant part of data manage-
ment (although it is not the
only part). Care must be taken
to ensure that the methods
used are appropriate for the
safety integrity level of the
overall system. In some appli-
cations, data will be generated
or computed automatically,
while in others it will be pro-
duced manually. In either case,
thought must be given to the
required accuracy of the data
and the allowable error rates.
It is also vital that the origins
of the data are recorded to
establish traceability. This
traceability will allow error
correction at the data source
and will also be an important
part of any subsequent safety
justification.

The need for verification
of the data is likely to place
considerable constraints on
the way that it is produced
and stored. If one looks at the
corresponding situation in the
production of executable
software, we know that the
use of low-level languages is
discouraged, since they pro-
duce poorly structured soft-
ware that is likely to contain
errors and which is hard to
verify. In the same way, re-
quirements for verification will
require that data is produced
and structured in a manner
that permits verification.

Software verification
makes use of a range of dy-
namic and static test tools, and
it is likely that a similar range
of tools will be needed for the
verification of data. In particu-
lar, the production of “static
data analysis” tools is seen as
being very important. It is
likely that such tools will
require that data is structured,
and perhaps annotated, to
allow effective verification.

The production of a data
safety requirements specification
will automatically influence
the validation process, since
the developers will need to
demonstrate that issues con-
tained within that document
are addressed within the
implementation.

While the use of a dedi-
cated data life cycle may assist
in the development of a ge-
neric data-driven system, it
does not tackle the specific
problems associated with the
adaptation of that generic
system to suit a particular
situation. One of the issues
raised in the survey is that
although appropriate verifica-
tion and validation methods
may be used for the generic
case, they are not always ap-
plied to each application-
specific instance of the system.
One way of tackling this prob-
lem is to have a development
life cycle model for the appli-
cation that is separate from
that of the generic system.
Separating the application
from the generic system in
this way allows individual
guidance or requirements to
be applied to the develop-
ment of these two distinct
aspects of the system.

Figure 3 shows a possible
life cycle model for an appli-
cation-specific instance of a
data-driven system. This re-
moves those activities related
to the development of the
generic application and em-
phasizes those tasks related to
ensuring the safety of a par-
ticular application.

The left-hand side of the
life cycle of Figure 3 clearly

E/E/PES Safety
Requirements
Specification

Data Safety
Requirements
Specification

Validation
Testing

E/E/PES
Architecture

Data
Architecture

Integration Testing
(components, subsystems

and programmable
electronics)

Data
System Design

Data
Structure
Design

Data
Generation/Collection

Integration
Testing

(module)

Populated
Data Structure

Testing

Validation Validated
Data

Output

Verification

Figure 2 — A Possible Development Life Cycle for a Generic Application
of a Data-Driven System.

Validation Validated
Data

Output

Verification

Data Safety
Requirements
Specification

Generic
Data Architecture

Generic
Data Structures

Generic
Procedures for:

Data Collection
Data Management

Data Test
Reporting

Generic
Data Sets

Validation
Testing

Integration Testing
(components, subsystems

and programmable
electronics)

Integration
Testing

(module)

Populated
Data Structure

Testing

Data
Generation/Collection

Figure 3 — A Possible Data Development Life Cycle for an Instance of a
Data-Driven System.

14 Journal of System Safety, Q4 2003

represents the design elements
of the development of the
data. In a system formed by
configuring a generic applica-
tion, this work will have been
performed at some time in the
past. However, it is essential
that those responsible for
configuring the system have
access to the various
deliverables from this work.
These include the data safety
requirements specification,
the data architecture and the
data structures, but also de-
fined procedures for the col-
lection, management and
testing of the data. Other
deliverables should include
details of an appropriate re-
porting structure. For ex-
ample, a data test report
should have been created and
be awaiting data test results.
Some mechanism must also
exist to ensure that informa-
tion gained during the devel-
opment and use of an indi-
vidual system is fed back to
provide inputs to future de-
velopment of the generic
aspects of the system.

While it would seem clear
that these deliverables would
be required for the correct
configuration of a data-driven
system, experience shows that
these are not available in
many (perhaps most) in-
stances. The use of a well-
documented life cycle model
of this type might help to
alleviate this problem.

The life cycle models
described above are based on
the generic standard IEC
61508. While this is a widely
used standard, it does not
meet with universal accep-
tance. However, the principles
outlined above could also be
applied to the life cycle mod-
els used within other stan-
dards to produce equivalent
ways of describing the process
of data management.

It is inevitable that indi-
vidual industrial sectors will
have different requirements
and practices for the use and

production of data. Therefore,
while generic standards can
give general guidance on mat-
ters related to data, industry-
related standards will inevita-
bly be needed to give more
specific information.

Validating Data-Driven
Systems
The task of validating a par-
ticular instance of a generic
system might be simplified by
producing a generic safety
case that covers the product, a
process-based safety case that
covers data management
(including any proposed regu-
lar data updates) and a sepa-
rate supporting document that
relates to a particular applica-
tion or instance. This support-
ing document could then be
updated to represent the
particular details of an indi-
vidual installation. The generic
part of the safety case would
need to argue (and demon-
strate) that changes to the
data would not affect overall
system safety. This might
require that such changes
could be shown to have a
limited scope for affecting the
operation of the system and
that faults within the data
component could be ad-
equately detected by testing.
It is likely that such an argu-
ment would require that the
data was adequately struc-
tured and validated to ensure
its integrity.

Since data-driven systems
are often complex, they may
benefit from visualization
techniques that offer a high
level of abstraction. One ap-
proach to this problem uses
patterns to represent com-
monly used (and reused)
components. This technique
has been applied to software
architectures and configura-
tion management, where it
can help identify bad architec-
tures or practices (which are
known as antipatterns). Pat-
terns have also been applied
to the reuse of common struc-

tures within safety case argu-
ments [Ref. 7]. Such reuse
would seem to be of consider-
able benefit in applications
where a generic system is
applied in a range of situa-
tions. It is also possible that
patterns may have relevance in
the development of data archi-
tectures and data structures.

Conclusion
The widespread use of COTS
is leading to an increasing
number of systems that make
use of large amounts of data.
A survey covering a range of
industries suggests that this
data component is not always
being developed in a manner
that is consistent with the
integrity requirements of the
system in question. One rea-
son for this could be that data
is largely ignored within the
various generic and industry-
specific standards.

Within data-driven sys-
tems, data should be consid-
ered as a distinct system ele-
ment with its own require-
ments documents and life
cycle. Generic standards such
as IEC 61508 should also give
specific guidance on the de-
sign, production and verifica-
tion of data. This, it is hoped,
will encourage engineers to
give the production and man-
agement of data the attention
it deserves.

About the Authors
Neil Storey is a Director
within the School of Engineer-
ing of the University of
Warwick in the U.K., and is
also a Fellow of the British
Computer Society (BCS) and
a Chartered Engineer. His
primary research interests are
in the area of safety-critical
computer systems. A member
of the BCS Expert Panel on
Safety-Critical Systems, he has
a large number of publications
in the safety area. Neil is also
the author of several text-
books on electronics and
safety, including Safety Critical
Computer Systems published
by Addison-Wesley.

Alastair Faulkner holds an
MSc degree in computer
science from the University of
Salford and is a Chartered
Engineer. His background is in
software development, mainly
concerned with computer-
based command and control
systems. Alastair’s research
interests are in the data man-
agement of data-driven safety-
related systems. He is also a
research engineer with the
University of Warwick and is
studying for an engineering
doctorate.

The authors received a
Best Paper award at the 20th

International System Safety
Conference in Denver in
2002.

Answer on page 36

G I T M A R L O H

N I T O A C M O B I N

I A S T L F I T A C

M R P C E F O N A R E

T E N S M E E L

His

What the bridegroom/project planning engineer needed to meet on the big day...

John, you look so
handsome
in your tux...

by Tom Muro

36 Journal of System Safety, Q4 2003

Article References

Solution from page 14.WORD
JUMBLE

See what the buzz is about

at the Hive at

www.system-safety.org

A place to ask questions,

post information,

or voice your opinion

on system safety topics.

1. McDermid, J.A. “The cost
of COTS.” In IEE Collo-
quium — COTS and
safety critical systems.
London, 1998.

2. IEC 61508. “Functional
Safety of electrical/elec-
tronic/programmable
electronic safety-related
systems.” Geneva, Interna-
tional Electrotechnical
Commission, 1998.

3. RTCA DO 178B /
EUROCAE ED-12B.
“Software Considerations
in Airborne Systems and
Equipment Certification.”
Washington, Radio Tech-
nical Commission for
Aeronautics, and Paris,
European Organisation
for Civil Aviation Elec-
tronics, 1992.

4. Interim Defence Standard
00-55. “The Procurement
of Safety Critical Soft-
ware in Defence Equip-
ment.” Glasgow, Director-
ate of Standardisation,
1991.

5. International Standard
880. “Software for Com-
puters in the Safety Sys-
tems of Nuclear Power
Stations.” Geneva, Inter-
national Electrotechnical
Commission, 1986.

6. Railway Industry Associa-
tion. “Safety Related Soft-
ware for Railway Signal-
ling.” Consultative Docu-
ment. London, 1991.

Data — The Forgotten
System Component?
(pages 10-14)

7. Kelly, T. and J. McDermid,
“Safety Case Construction
and Reuse Using Patterns.”
In Proceedings of the 16th

International Conference
on Computer Safety and
Reliability (SAFECOMP
’97). York, U.K.,1997.

G I T MA RL O H

NI TO AC M OB I N

IA ST LF I TA C

MRP CE F O NAR E

TE N SME EL

His

What the bridegroom/project planning engineer needed to meet on the big day...

John, you look so
handsome
in your tux...

F O R M A L S P E CC

I

I F I A T I O N S

When Is System Safety
Necessary?
(pages 18-20)

1. “Standard Practice for
System Safety.” MIL-
STD-882-D, February
2000.

2. Kije, L.T. Residual Risk.
Russe Press (Eng. transl.),
1963, p. 34.

